CHo thêm bài tương tự nè !
Cho a , b ,c là các số thực duơng thoả mãn a + b +c \geq 6
Tìm MIN của
[TEX]C = \sqrt{a^2 + \frac{1}{b + c}} + \sqrt{b^2 + \frac{1}{a + c}} + \sqrt{c^2 + \frac{1}{a + b}}[/TEX]
[TEX]\sqrt{[a^2+(\frac{1}{\sqrt{b+c}})^2](4^2+1^2)} \geq 4a+\frac{1}{\sqrt{b+c}}[/TEX]
[TEX]\sqrt{[b^2+(\frac{1}{\sqrt{a+c}})^2](4^2+1^2)} \geq 4b+\frac{1}{\sqrt{a+c}} [/TEX]
[TEX]\sqrt{[c^2+(\frac{1}{\sqrt{b+a}})^2](4^2+1^2)} \geq 4c+\frac{1}{\sqrt{b+a}} [/TEX]
\Rightarrow[TEX]\sqrt{17}.C \geq 4(a+b+c}+(\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{a+c}}+\frac{1}{\sqrt{b+a}}[/TEX]
\geq [TEX]4(a+b+c) +\frac{9}{\sqrt[3]{\sqrt{a+b}.\sqrt{b+c}.\sqrt{a+c}}}\geq 4(a+b+c) +\frac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}[/TEX]
\geq[TEX]4(a+b+c)+\frac{9}{\sqrt{(1^2+1^2+1^2)[(a+b)+(b+c)+(c+a)]}[/TEX]
[TEX]=4(a+b+c)+\frac{9}{\sqrt{6(a+b+c)}[/TEX]
\geq[TEX]\frac{31}{8}(a+b+c) +\frac{a+b+c}{8}+\frac{9}{2\sqrt{6(a+b+c)}}+ \frac{9}{2\sqrt{6(a+b+c)}}[/TEX]
\geq[TEX]\frac{31}{8}.6+3.\sqrt[3]{\frac{a+b+c}{8}.\frac{9}{2\sqrt{6(a+b+c)}}.\frac{9}{2\sqrt{6(a+b+c)}}[/TEX]
[TEX]=\frac{51}{2}[/TEX]
\Rightarrow[TEX]\sqrt{17}.C \geq \frac{51}{2}[/TEX]
\Rightarrow [TEX] Min C =\frac{3.\sqrt{17}}{2}[/TEX]
\Leftrightarrow[TEX]a=b=c=2[/TEX]