a,Đặt [tex]\frac{bc+1}{c}=x;\frac{ca+1}{a}=y;\frac{ab+1}{b}=z[/tex]
khi đó [tex]B=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq x+y+z[/tex](theo bunhia dạng phân thức)
hay [tex]B\geq \frac{bc+1}{c}+\frac{ca+1}{a}+\frac{ab+1}{b}[/tex]
[tex]\Leftrightarrow B\geq a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}[/tex]
[tex]=4a+\frac{1}{a}+4b+\frac{1}{b}+4c+\frac{1}{c}-3(a+b+c)[/tex]
[tex]\geq 4+4+4-3(\frac{3}{2})=\frac{15}{2}[/tex]
Dấu = khi [tex]a=b=c=\frac{1}{2}[/tex]