Bất Đẳng Thức Toán 9

T

tell_me_goobye

Last edited by a moderator:
T

tinhbanonlinevp447

1)CHO x,y,z>0 và xyz=1
CM
[TEX] A= \frac{x^3}{(1+y)(1+z)} +\frac{y^3}{(1+x)(1+z)}+\frac{z^3}{(1+x)(1+y)} \geq 3/4[/TEX]

[TEX]\frac{x^3}{(1+y)(1+z)}+\frac{1+y}{8}+\frac{1+z}{8} \geq \frac{3x}{4}[/TEX]
[TEX]\frac{y^3}{(1+x)(1+z)}+\frac{1+x}{8}+\frac{1+z}{8} \geq \frac{3y}{4}[/TEX]
[TEX]\frac{z^3}{(1+x)(1+y)} +\frac{1+x}{8}+\frac{1+y}{8} \geq \frac{3z}{4}[/TEX]
[TEX]\Rightarrow A= \frac{x^3}{(1+y)(1+z)} +\frac{y^3}{(1+x)(1+z)}+\frac{z^3}{(1+x)(1+y)} \geq \frac{x}{2}+\frac{y}{2}+\frac{z}{2}-\frac{3}{4}\geq 3 \sqrt[3]{\frac{xyz}{8}}-\frac{3}{4}=\frac{3}{4}[/TEX]
 
Top Bottom