Bất đẳng thức tổ hợp

R

rua_it

[tex]k=0 \rightarrow C^n_{2n+k}.C^n_{2n-k} =[C_{2n}^n]^2[/tex]

[tex] Dat: U_k=C^n_{2n+k}+C^n_{2n-k} \rightarrow U_o=[C_{2n}^n]^2[/tex]

[tex](ycbt) \rightarrow U_o \geq U_k; \forall n \geq k;k \in\ N[/tex] [tex]and[/tex] [tex]k \in\ Z[/tex]

Do đó ta chỉ cần phải chứng minh dãy [tex]U_k[/tex] là dãy số giảm.
Nói cách khác [tex]U_k \geq U_{k+1} ;\forall k \in\ Z[/tex]

[tex]Xet: U_k-U_{k-1} =C^n_{2n+k}.C^n_{2n-k}-C^n_{k+2n+1}.C^n_{k+2n-1}[/tex]
[tex]=\frac{(2n+k)!.2n-k}{(n+k)!.n!}.\frac{(2n-k)!}{(n-k)!.n!}-\frac{(k+2n+1)!}{(k+1-n)!.n!}.\frac{(2n-1-k)!}{(n-1-k)!.n!}[/tex]
[tex]=\frac{(2n+k)!(2n-1-k)!.((2n-k)(k+1+n)-(2n+1+k)(n-k))}{(n+k+1)!(n-k)!.(n!)^2} \\ =\frac{2n+k)!(2n-1-k)!.n.(2k+1)}{(k+1+n)!(n-k)!(n!)^2} \geq 0 (dpcm)[/tex]
.
 
Last edited by a moderator:
Top Bottom