abc=1
Cm :
$\dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}\ge \dfrac{3}{4}$
Đề như này vẫn chứng minh được nhé. Nhưng mà có thêm cái điều kiện $a, b, c>0$ nữa
Giải
$S= \dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}$
$S= \dfrac{a(c+1)+ b(a+1)+c(a+1)}{(a+1)(b+1)(c+1)}$
$S= \dfrac{ac+ab+bc+a+b+c}{(a+1)(b+1)(c+1)}$
Áp dụng BĐT Cô-si, ta có:
$ac+ab+bc+a+b+c \ge 6\sqrt[6]{a^3b^3c^3}$
\Rightarrow $ac+ab+bc+a+b+c \ge 6$
Có:
$ac+ab+bc+a+b+c =\dfrac{3(ac+ab+bc+a+b+c)}{4}+ \dfrac{ac+ab+bc+a+b+c}{4} \ge \dfrac{3(ac+ab+bc+a+b+c)}{4} + \dfrac{6}{4}$
\Rightarrow $ac+ab+bc+a+b+c \ge \dfrac{3(ac+ab+bc+a+b+c+2)}{4}$
\Rightarrow $ac+ab+bc+a+b+c \ge \dfrac{3(ac+ab+bc+a+b+c+1+ abc)}{4}$
\Rightarrow $ ac+ab+bc+a+b+c \ge \dfrac{3(a+1)(b+1)(c+1)}{4}$
\Rightarrow $\dfrac{ac+ab+bc+a+b+c}{(a+1)(b+1)(c+1)} \ge \dfrac{3(a+1)(b+1)(c+1)}{4(a+1)(b+1)(c+1)}$
\Rightarrow $\dfrac{a(c+1)+ b(a+1)+c(a+1)}{(a+1)(b+1)(c+1)}\ge\dfrac{3}{4}$
\Rightarrow $\dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}\ge \dfrac{3}{4}$(đpcm)
Dấu "=" xảy ra
$\rightarrow a= b= c= 1$