Bat dang thuc nua day

P

pe_lun_hp

Đề bài thiếu và sai
Đề đúng và được giải như sau:


2) cho a,b,c>0 thoả mãn abc=1.chứng minh rằng:
$\frac{a^3}{(1+b)(1+c)}+\frac{b^3}{(1+c)(1+a)}$ $+$ $\frac{c^3}{(1+a)(1+b)}$ \geq $\frac{3}{4}$

Cauchy thôi bạn :)

$\dfrac{a^3}{(1+b)(1+c)} + \dfrac{1+b}{8} + \dfrac{1+c}{8}$ \geq $\dfrac{3a}{4}$

$\dfrac{b^3}{(1+c)(1+a)} + \dfrac{1+c}{8} + \dfrac{1+a}{8}$ \geq $\dfrac{3b}{4}$

$\dfrac{c^3}{(1+a)(1+b)} + \dfrac{1+a}{8} + \dfrac{1+b}{8}$ \geq $\dfrac{3c}{4}$

\Rightarrow $\sum \dfrac{a^3}{(1+b)(1+c)}$ \geq $\dfrac{3}{4}(a+b+c) -2.[\dfrac{(1+a)+(1+b)+(1+c)}{8}]$

\Leftrightarrow $\sum \dfrac{a^3}{(1+b)(1+c)}$ \geq $\dfrac{2(a+b+c)-3}{4}$

Có $a+b+c$ \geq $3\sqrt[3]{abc}=3$

\Rightarrow $\sum \dfrac{a^3}{(1+b)(1+c)}$ \geq $\dfrac{3}{4}$

(đpcm)
 
H

huongmot

abc=1
Cm :
$\dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}\ge \dfrac{3}{4}$
Đề như này vẫn chứng minh được nhé. Nhưng mà có thêm cái điều kiện $a, b, c>0$ nữa :D

Giải
$S= \dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}$
$S= \dfrac{a(c+1)+ b(a+1)+c(a+1)}{(a+1)(b+1)(c+1)}$
$S= \dfrac{ac+ab+bc+a+b+c}{(a+1)(b+1)(c+1)}$

Áp dụng BĐT Cô-si, ta có:
$ac+ab+bc+a+b+c \ge 6\sqrt[6]{a^3b^3c^3}$
\Rightarrow $ac+ab+bc+a+b+c \ge 6$

Có:
$ac+ab+bc+a+b+c =\dfrac{3(ac+ab+bc+a+b+c)}{4}+ \dfrac{ac+ab+bc+a+b+c}{4} \ge \dfrac{3(ac+ab+bc+a+b+c)}{4} + \dfrac{6}{4}$
\Rightarrow $ac+ab+bc+a+b+c \ge \dfrac{3(ac+ab+bc+a+b+c+2)}{4}$
\Rightarrow $ac+ab+bc+a+b+c \ge \dfrac{3(ac+ab+bc+a+b+c+1+ abc)}{4}$
\Rightarrow $ ac+ab+bc+a+b+c \ge \dfrac{3(a+1)(b+1)(c+1)}{4}$
\Rightarrow $\dfrac{ac+ab+bc+a+b+c}{(a+1)(b+1)(c+1)} \ge \dfrac{3(a+1)(b+1)(c+1)}{4(a+1)(b+1)(c+1)}$
\Rightarrow $\dfrac{a(c+1)+ b(a+1)+c(a+1)}{(a+1)(b+1)(c+1)}\ge\dfrac{3}{4}$
\Rightarrow $\dfrac{a}{(a+1)(b+1)} + \dfrac{b}{(b+1)(c+1)} +\dfrac{c}{(c+1)(a+1)}\ge \dfrac{3}{4}$(đpcm)
Dấu "=" xảy ra
$\rightarrow a= b= c= 1$
 
Top Bottom