M
manhnguyen0164


1. Cho $a,b,c$ thõa mãn $a^2+b^2+c^2=1$. Chứng minh:
$abc+2(1+a+b+c+ab+ac+bc)\ge0$
2. Cho $x,y,z>0$ thõa mãn $\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=6$
Chứng minh: $\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}$
$abc+2(1+a+b+c+ab+ac+bc)\ge0$
2. Cho $x,y,z>0$ thõa mãn $\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=6$
Chứng minh: $\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}$