Toán 12 Bất đẳng thức

V

vodichhocmai

[TEX]a,b,c>0[/TEX]

$\frac{1}{a^3+b^3+abc}$ + $\frac{1}{a^3+c^3+abc}$ + $\frac{1}{b^3+c^3+abc}$ \leq $\frac{1}{abc}$

[TEX]\frac{1}{a^3+b^3+abc} + \frac{1}{a^3+c^3+abc} + \frac{1}{b^3+c^3+abc}\le \frac{1}{ab(a+b+c)}+\frac{1}{ac(a+b+c)}+\frac{1}{bc(a+b+c)}=\frac{1}{abc} [/TEX]

Chú ý [TEX]x,y >0[/TEX] thì [TEX]x^3+y^3 \ge xy(x+y)[/TEX]
 
M

magiciancandy

Hình như là n số,nhưng bạn cứ làm cả 2 trường hợp cho mình vs,hì
 
V

vodichhocmai

[TEX]x_1,x_2.x_3,x_4 ......x_n > 0[/TEX] chứng minh rằng

[TEX]\frac{1}{x_1^n+x_2^n+x_3^n+x_4^n+...+ x_{n-1}^n+x_1x_2x_3x_4..x_n}+ \frac{1}{x_1^n+x_2^n+x_3^n+x_4^n+...+ x_{n-2}^n+x_n^n+x_1x_2x_3x_4..x_n}+\frac{1}{x_1^n+x_2^n+x_3^n+x_4^n+...+ x_{n-1}^n+x_n^n+x_1x_2x_3x_4..x_n}+ \ldots+\frac{1}{x_2^n+x_3^n+x_4^n+...+x_{n-2}^n+ x_{n-1}^n+x_1x_2x_3x_4..x_n } \le \frac{1}{x_1x_2x_3x_4..x_n} [/TEX]

Chú ý rằng :

[TEX]x_1^n+x_2^n+x_3^n+x_4^n+...+ x_{n-1}^n+x_1x_2x_3x_4..x_n \ge x_1x_2x_3x_4..x_{n-1}\( x_1+x_2+x_3+ \ldots x_{n-1}\)+ x_1x_2x_3x_4..x_n= x_1x_2x_3x_4..x_{n-1}\(x_1+x_2+x_3+ \ldots x_{n-1}+x_n\)[/TEX]

Tương tự cọng lại thì ta có :

[TEX]VT \le \frac{1}{x_1x_2x_3x_4..x_{n-1}\(x_1+x_2+x_3+ \ldots x_{n-1}+x_n\)}+\frac{1}{x_1x_2x_3x_4..x_{n-2}x_n^n\(x_1+x_2+x_3+ \ldots x_{n-1}+x_n\)}+\frac{1}{x_1x_2x_3x_4..x_{n-3}^nx_{n-1}^nx_n^n\(x_1+x_2+x_3+ \ldots x_{n-1}+x_n\)} + \ldots \frac{1}{x_2x_3x_4..x_{n-1}x_n^n\(x_1+x_2+x_3+ \ldots x_{n-1}+x_n\)} =VP[/TEX]
 
Top Bottom