bất đẳng thức khó

B

bboy114crew

Cho [TEX]xy+yz+zx=3[/TEX] CMR:
[TEX]\frac{1}{xyz}+\frac{4}{(x+y)(y+z)(z+x)} \geq \frac{3}{2}[/TEX]
Áp dụng AM-GM ta có:

[TEX]\frac{1}{xyz}+\frac{4}{(x+y)(y+z)(z+x)}[/TEX]
[TEX]=\frac{1}{2xyz}+\frac{1}{2xyz}+\frac{4}{(x+y)(y+z)(z+x)} [/TEX]
[TEX]\geq 3\sqrt[3]{1}{xyz.xyz.(x+y)(y+z)(z+x)}[/TEX]
[TEX]= 3 \sqrt[3]{1}{xyz(xz+yz)(yx+zx)(zy+xy)}[/TEX]
Theo AM-GM ta có:
[TEX]xyz \leq \sqrt{\frac{(x+y+z)^3}{27}}[/TEX]
và [TEX](xz+yz)(yx+zx)(zy+xy) \leq \frac{(xy+yz+xz)^3}{27}[/TEX]
\Rightarrow[TEX]\frac{1}{xyz}+\frac{4}{(x+y)(y+z)(z+x)} \geq \frac{3}{2}[/TEX]
 
Top Bottom