Cho 3 số thực dương a,b,c thỏa mãn [tex]\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\geq \frac{1}{2}[/tex]
CMR P=[tex]\frac{\sqrt{2a^{2}+b^{2}}}{ab}+\frac{\sqrt{2b^{2}+c^{2}}}{bc}+\frac{\sqrt{2c^{2}+a^{2}}}{ac}\geq \sqrt{3}[/tex]
Ta có: [tex](2a+b)^{2}=4a^{2}+b^{2}+4ab\leq 4a^{2}+b^{2}+2(a^{2}+b^{2})=3(2a^{2}+b^{2})[/tex]
[tex]\Rightarrow \frac{\sqrt{2a^{2}+b^{2}}}{ab}\geq \frac{1}{\sqrt{3}}.\frac{b+2a}{ab}= \frac{1}{\sqrt{3}}.(\frac{1}{a}+\frac{2}{b})[/tex]
Tương tự:...
Suy ra:
$P=\frac{\sqrt{2a^{2}+b^{2}}}{ab}+\frac{\sqrt{2b^{2}+c^{2}}}{bc}+\frac{\sqrt{2c^{2}+a^{2}}}{ac}\\\geq \frac{1}{\sqrt{3}}.\left ( \frac{3}{a}+\frac{3}{b}+\frac{3}{c} \right )\\=\frac{\sqrt{3}}{2}.\left [ \left ( \frac{1}{a}+\frac{1}{b} \right )+\left ( \frac{1}{b}+\frac{1}{c} \right )+\left ( \frac{1}{c}+\frac{1}{a} \right ) \right ]\\\geq \frac{\sqrt{3}}{2}.\left ( \frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a} \right )\\=2\sqrt{3}\left ( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \right )\\\geq 2\sqrt{3}.\frac{1}{2}=\sqrt{3}$
Dấu = xảy ra khi [tex]a=b=c=3[/tex]