You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser.
Với các số m, n, p không âm ta luôn có BĐT
- Áp dụng BĐT Bunhiacôpxki, ta có:
[TEX](\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p})(m+n+p) \geq (\frac{a}{\sqrt{m}}.\sqrt{m}+\frac{b}{\sqrt{n}}. \sqrt {n}+\frac{c}{\sqrt{p}}.\sqrt{p})^2=(a+b+c)^2[/TEX]
[TEX]\Rightarrow (\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p})(m+n+p) \geq (a+b+c)^2[/TEX]
[TEX]\Rightarrow \frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p} \geq \frac{(a+b+c)^2}{m+n+p}(dpcm)[/TEX]