bất đẳng thức cauchy

B

bo_ieu_tho

HD: Chuyển 3 phân thức sang vế phải, lấy 1 trừ từng cái, dung AM_GM. Tương tự, sau đó nhân lại ^^
 
J

jet_nguyen

Giải:​
Đặt: $$A=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+ \dfrac{1}{d+1}$$ Ta có:
$$A =\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+ \dfrac{1}{d+1} \ge 3$$$$\Longrightarrow \dfrac{1}{a + 1} \ge 1 - \dfrac{1}{b + 1} + 1 - \dfrac{1}{c+ 1}+ 1 - \dfrac{1}{d + 1}$$$$\Longrightarrow \dfrac{1}{a+1} \ge \dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1}$$
Áp dụng BĐT Cauchy cho 3 số dương:
$$\dfrac{b}{b+1}+\dfrac{c}{c+1}+\dfrac{d}{d+1} \ge 3 \sqrt[3]{\dfrac{bcd}{(b + 1)(c + 1)(d + 1)}}$$$$\Longrightarrow \dfrac{1}{a+1} \ge \sqrt[3]{\dfrac{bcd}{(b + 1)(c + 1)(d + 1)}}$$Tương tự:
$$\dfrac{1}{b+1} \ge \sqrt[3]{\dfrac{acd}{(a + 1)(c + 1)(d + 1)}}$$$$\dfrac{1}{c+1} \ge \sqrt[3]{\dfrac{abd}{(a + 1)(b + 1)(d + 1)}}$$$$\dfrac{1}{d+1} \ge \sqrt[3]{\dfrac{abc}{(a+1)(b + 1)(c + 1)}}$$Nhân theo vế ta được điều phải chứng minh:$$ \left(\dfrac{1}{a+1}\right) \left(\dfrac{1}{b+1}\right) \left(\dfrac{1}{c+1}\right) \left(\dfrac{1}{d+1}\right) \ge \dfrac{81abcd}{(a + 1)(b + 1)(c + 1)(d + 1)}$$$$\Longrightarrow 1 \ge 81abcd $$$$\Longrightarrow abcd \ge \dfrac{1}{81}$$
 
Last edited by a moderator:
Top Bottom