\[\begin{array}{l}
\frac{1}{p} = \frac{1}{{{m^2}}} + \frac{1}{{{n^2}}}\\
= > \frac{1}{p} = \frac{{{n^2} + {m^2}}}{{{m^2}.{n^2}}}\\
= > {m^2}.{n^2} = p{n^2} + p{m^2}\\
= > p{n^2} + p{m^2} \vdots {n^2} = > p{m^2} \vdots {n^2}\,\,\,\,\,\,\,\,\\
ma\,\,p\,\,la\,\,so\,\,nguyen\,\,to\,\,(khong\,\,la\,\,so\,\,chinh\,\,phuong) = > {m^2} \vdots {n^2}\\
tu:\,\,{m^2}.{n^2} = p{n^2} + p{m^2}\\
= > p{n^2} + p{m^2} \vdots {m^2} = > p{n^2} \vdots {m^2}\\
ma\,\,p\,\,la\,\,so\,\,nguyen\,\,to\,\,(khong\,\,la\,\,so\,\,chinh\,\,phuong) = > {n^2} \vdots {m^2}\\
{m^2} \vdots {n^2};\,\,{n^2} \vdots {m^2} = > n = m\\
= > \frac{1}{p} = \frac{1}{{{m^2}}} + \frac{1}{{{n^2}}} = \frac{2}{{{m^2}}}\\
= > 2p = {m^2}\\
2p\,\,la\,\,so\,\,chinh\,\,phuong\,\,chia\,\,het\,\,cho\,\,2 = > 2p \vdots 4 = > p = 2\\
= > dpcm
\end{array}\]