bai toan bdt kho ai muon thu

S

shgost92

[TEX]gs:\ \ x\ge y\ge z[/TEX]

[TEX]\blue 3\(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)-\(x^2+y^2+z^2\)\(\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\)=\sum_{cyclic}\(x^2-y^2\)\(\frac{x}{y+z}-\frac{y}{z+x}\)\ge 0 [/TEX]



cach lam kho hieu qua^^^^^^..................................................................................
 
V

vietha99999

[TEX]gs:\ \ x\ge y\ge z[/TEX]

[TEX]\blue 3\(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)-\(x^2+y^2+z^2\)\(\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\)=\sum_{cyclic}\(x^2-y^2\)\(\frac{x}{y+z}-\frac{y}{z+x}\)\ge 0 [/TEX]
Bác Khanhsy chém phức tạp quá:
[TEX]\frac{x^3}{y+z}+\frac{x(y+z)}{4}\ge x^2 [/TEX]
Tương tự, cộng lại:
[TEX]\(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2 [/TEX]
Lại do [TEX] x^2+y^2+z^2 \ge xy+yz+zx \(\Leftrightarrow \frac{1}{2}\((x-y)^2+(y-z)^2+(z-x)^2\)\ge 0\)[/TEX]
nên
[TEX]\(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)\ge \frac{3}{2} [/TEX]
 
Top Bottom