bài tích phân

L

llan9731998

đặt x = \frac{pi}{2} - t

\RightarrowI= \int_{\frac{\pi}{2}}^{0}\frac{\sqrt{sin t}}{\sqrt{cost} + \sqrt{sint}}(-dt)
= \int_{0}^{\frac{\pi}{2}}\frac{\sqrt{sint}}{{sqrt{cost} + \sqrt{sint}}dxt= I1
\Rightarrow I= I1 và I + I1 = \int_{0}^{\frac{pi}{2}}\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx} + \sqrt{cosx}}dx = \int_{0}^{\frac{pi}{2}}dx = \frac{pi}{2}
\Leftrightarrow I +I1 = \frac{pi}{2} \Rightarrow I = \frac{pi}{4}
 
C

conga222222

\[\begin{array}{l}
x = \frac{\pi }{2} - t\\
I = \int_{\frac{\pi }{2}}^0 {\frac{{\sqrt {sint} }}{{\sqrt {cost} + \sqrt {sint} }}} ( - dt) = \int_0^{\frac{\pi }{2}} {\frac{{\sqrt {sint} }}{{\sqrt {\sin t} + \sqrt {\cos t} }}dt = \int_0^{\frac{\pi }{2}} {\frac{{\sqrt {\sin x} }}{{\sqrt {\cos x} + \sqrt {\sin x} }}dx} } \\
\to 2I = \int_0^{\frac{{pi}}{2}} {\frac{{\sqrt {sinx} + \sqrt {cosx} }}{{\sqrt {sinx} + \sqrt {cosx} }}} dx\\
= \int_0^{\frac{\pi }{2}} d x = \frac{\pi }{2}\\
\to I = \frac{\pi }{4}
\end{array}\]
 
Top Bottom