$A=\left [\dfrac{x^2-\sqrt x}{x+\sqrt x+1}-\dfrac{2x+\sqrt x}{\sqrt x}+\dfrac{2(x-1)}{\sqrt x-1} \right ]\color{red}{.}\dfrac{1}{x\sqrt x+1}$ chứ nhỉ?
a) ĐKXĐ: $x>0;x\neq 1$
b) $A=\left [\dfrac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\dfrac{2(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1} \right ].\dfrac1{(\sqrt{x}+1)(x-\sqrt{x}+1)}
\\=\dfrac{(x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2)}{(\sqrt{x}+1)(x-\sqrt{x}+1)}=\dfrac{x-\sqrt{x}+1}{(x-\sqrt{x}+1)(\sqrt{x}+1)}=\dfrac{1}{\sqrt x+1}$
c) $A=\dfrac{1}{\sqrt{5-2\sqrt 6}+1}=\dfrac{1}{\sqrt{(\sqrt{3}-\sqrt{2})^2}+1}=\dfrac{1}{\sqrt{3}-(\sqrt{2}-1)}=\dfrac{\sqrt 3+\sqrt{2}-1}{3-(\sqrt{2}-1)^2}=\dfrac{\sqrt 3+\sqrt{2}-1}{2\sqrt{2}}=\dfrac{2+\sqrt{6}-\sqrt{2}}{4}$
d) $A=\dfrac{1}{3}\Leftrightarrow \dfrac{1}{\sqrt x+1}=\dfrac{1}{3}\Leftrightarrow \sqrt{x}+1=3\Leftrightarrow \sqrt{x}=2\Leftrightarrow x=4$ (TM)
e) $1>0;\sqrt{x}>0\Leftrightarrow \sqrt{x}+1>0\Rightarrow A=\dfrac{1}{\sqrt x+1}>0$
f) $A<\dfrac{1}{4}\Leftrightarrow \dfrac{1}{\sqrt x+1}<\dfrac{1}{4}\Leftrightarrow \sqrt{x}+1>4\Leftrightarrow \sqrt{x}>3\Leftrightarrow x>9$
g) $A\in \mathbb{Z}\Leftrightarrow \dfrac{1}{\sqrt x+1}\in \mathbb{Z}\Leftrightarrow 1 \ \vdots \ (\sqrt{x}+1)\Leftrightarrow(\sqrt{x}+1)\in Ư(1)\Rightarrow \sqrt{x}+1=1\Leftrightarrow x=0$ (KTM)
Vậy...