[tex]M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\\=\dfrac{1}{2}\left (\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{10.11.12} \right )\\=\dfrac{1}{2}\left ( \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12} \right )\\=\dfrac{1}{2}\left ( \dfrac{1}{2}-\dfrac{1}{132} \right )=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}[/tex]