Bài tập PT lượng giác! [GIÚP MÌNH]

B

braga

[TEX]\fbox{2}. \ 8\sqrt{2}cos^6x+2\sqrt{2}sin^3xsin3x-6\sqrt{2}cos^4x-1=0[/TEX]

[TEX]8\sqrt{2}cos^6x+2\sqrt{2}sin^3x(3sinx-4sin^3x)-6\sqrt{2}cos^4x-1=0[/TEX]

[TEX]8\sqrt{2}cos^6x+6\sqrt{2}sin^4x-8\sqrt{2}sin^6x-6\sqrt{2}cos^4x-1=0[/TEX]

[TEX]8\sqrt{2}cos2x(cos^4x+cos^2xsin^2x+sin^4x)-6\sqrt{2}cos2x-1=0[/TEX]

[TEX]8\sqrt{2}cos2x(1-cos^2xsin^2x)-6\sqrt{2}cos2x-1=0[/TEX]

[TEX]2\sqrt{2}cos2x-8\sqrt{2}cos2xcos^2xsin^2x-1=0[/TEX]

[TEX]2\sqrt{2}cos2x-2\sqrt{2}cos2xsin^22x-1=0[/TEX]

[TEX]2\sqrt{2}cos^32x=1[/TEX]
 
K

khunjck

4/ [TEX]3.cos4x - 2.cos^2{3x} = 1[/TEX]

\Leftrightarrow[TEX]3.(2.cos^2{2x} - 1) - 2.{\frac{1 + cos6x}{2}} = 1[/TEX]

\Leftrightarrow[TEX]6.cos^2{2x} - 3 - 1 - cos6x = 1[/TEX]

\Leftrightarrow[TEX]6.cos^2{2x} - cos4x.cos2x + sin2x.sin4x = 5[/TEX]

\Leftrightarrow[TEX]6.cos^{2x} - (2.cos^2{2x} - 1).cos2x + 2.sin^2{2x}.cos2x = 5[/TEX]

\Leftrightarrow[TEX]4.cos^3{2x} - 6.cos^2{2x} + 3.cos2x + 5 = 0[/TEX]

...........
 
K

kinga2

câu 4

trên là câu 2, câu 4 nè:D
3.cos4x - .cos^2(3x) = 1
\Leftrightarrow 3.[2.cos^2(2x)-1]- 2.[ (1+cos6x)/2]=1
\Leftrightarrow6cos^2(2x) - 3 - cos6x - 1 =1
\Leftrightarrow6cos^2(2x) - [4cos^3(2x) - 3cos2x] +5=0
\Leftrightarrow4cos^3(2x) - 6cos^2(2x) -3cos2x + 5 =0
\Leftrightarrowcos2x=1
\Leftrightarrow2x=k2pi
\Leftrightarrowx=pi.k
 
Last edited by a moderator:
N

newstarinsky

câu 1

[TEX]\frac{3}{8}.(1+cos4x)^3+\frac{1}{4}.(1-cos4x)^2+cos4x=0[/TEX]

[TEX]\Leftrightarrow 3cos^34x+11cos^24x+13cos4x+5=0[/TEX]

[TEX]\Leftrightarrow\Leftrightarrow\left[\begin{cos4x=-1}\\{cos4x = -\frac{5}{3}}(ko tm)[/TEX]
 
H

hoanghondo94

Còn bài cuối nữa , :) , Mình giúp bạn nhé :)

Ta có: $$PT \Longleftrightarrow (\cos^2x - \sin^2x)(\cos^4x + \sin^4x + \sin^2x\cos^2x) = \frac{13}{8}\cos^2{2x}$$ $$ \Longleftrightarrow \cos2x ( 1 - \frac{\sin^2{2x}}{4}) = \frac{13}{8}\cos^2{2x}$$ $$\Longleftrightarrow \left[ \begin{array}{l} cos2x = 0 \\ 1 - \frac{\sin^2{2x}}{4} = \frac{13}{8}\cos2x (1) \end{array}\right.$$

Thay $\sin^2{2x} = 1 - \cos^2{2x}$ vào (1) rồi giải phương trình bậc 2 ẩn $\cos2x$

Chúc bạn học tốt :)
 
Top Bottom