Bài tập lượng giác

M

myrainbow210

C

connguoivietnam

1)
[TEX]\frac{sin^8c}{a^3}+\frac{cos^8c}{b^3}=\frac{1}{(a+b)^3}[/TEX]

[TEX](\frac{1}{a}+\frac{1}{b})(\frac{sin^8c}{a^2}+\frac{cos^8c}{b^2})-\frac{sin^8c}{a^2b}-\frac{cos^8c}{ab^2}=\frac{1}{(a+b)^3}(1)[/TEX]
mà ta có
[TEX]\frac{sin^4c}{a}+\frac{cos^4c}{b}=\frac{1}{a+b}[/TEX]

[TEX]\frac{sin^8c}{a^2}+\frac{cos^8c}{b^2}+\frac{2sin^4c.cos^4c}{ab}=\frac{1}{(a+b)^2}(2)[/TEX]
thay (2) vào (1) ta có
[TEX](\frac{a+b}{ab})(\frac{1}{(a+b)^2}-\frac{2sin^4c.cos^4c}{ab})-\frac{sin^8c}{a^2b}-\frac{cos^8c}{ab^2}=\frac{1}{(a+b)^3}[/TEX]

[TEX]\frac{1}{ab(a+b)}-\frac{2(a+b)sin^4c.cos^4c}{(ab)^2}-\frac{sin^8c}{a^2b}-\frac{cos^8c}{ab^2}=\frac{1}{(a+b)^3}[/TEX]

[TEX]\frac{1}{ab(a+b)}-\frac{sin^4c}{ab}(\frac{sin^4c}{a}+\frac{cos^4c}{b})-\frac{cos^4c}{ab}(\frac{sin^4c}{a}+\frac{cos^4c}{b})-\frac{sin^4c.cos^4c}{ab^2}-\frac{cos^4c.sin^4c}{a^2b}=\frac{1}{(a+b)^3}[/TEX]

[TEX]\frac{1}{ab(a+b)}-\frac{1}{ab(a+b)}(sin^4c+cos^4c)-\frac{sin^4c.cos^4c}{ab^2}-\frac{cos^4c.sin^4c}{a^2b}=\frac{1}{(a+b)^3}[/TEX]

[TEX]\frac{1}{ab(a+b)}-\frac{1}{ab(a+b)}(1-2sin^2c.cos^2c)-\frac{sin^4c.cos^4c}{ab}(\frac{a+b}{ab})=\frac{1}{(a+b)^3}[/TEX]

[TEX]\frac{2sin^2c.cos^2c}{ab(a+b)}-\frac{sin^4c.cos^4c}{ab}(\frac{a+b}{ab})=\frac{1}{(a+b)^3}[/TEX]
 
Last edited by a moderator:
Top Bottom