Tìm dạng tam giác ABC, nếu:
Sin A/ Sin B= (Cos B + Cos C)/ (Cos C + Cos A)
Giải
[laTEX]\frac{sin(\frac{A}{2})cos(\frac{A}{2})}{sin(\frac{B}{2})cos(\frac{B}{2})} = \frac{cos(\frac{B+C}{2})cos(\frac{B-C}{2})}{cos(\frac{A+C}{2})cos(\frac{C-A}{2})} \\ \\ \frac{sin(\frac{A}{2})cos(\frac{A}{2})}{sin(\frac{B}{2})cos(\frac{B}{2})} = \frac{sin(\frac{A}{2})cos(\frac{B-C}{2})}{sin(\frac{B}{2})cos(\frac{C-A}{2})} \\ \\ TH_1: sin\frac{A}{2} = 0 \Rightarrow A = 0 (vo-ly) \\ \\ TH_2: \frac{cos(\frac{A}{2})}{cos(\frac{B}{2})} = \frac{cos(\frac{B-C}{2})}{cos(\frac{C-A}{2})} \\ \\ cos(\frac{A}{2}).cos(\frac{C-A}{2}) =cos(\frac{B}{2}).cos(\frac{B-C}{2}) \\ \\ cos(\frac{C}{2}) +cos(\frac{2A-C}{2}) = cos(\frac{C}{2})+ cos(\frac{2B-C}{2}) \\ \\ \frac{2A-C}{2} = \frac{2B-C}{2} \\ \\ \Rightarrow A = B \Rightarrow tam-giac-ABC-can-tai-C [/laTEX]