bai tap gioi han

D

duynhan1

Vui long giup minh bai nay
1.[TEX]A_1 = \lim_{x\to+\infty}(\sqrt[n]{(x+a1)(x+a2)...(x+a_n)}-x[/TEX]
2.[TEX]A_2 = \lim_{x\to 1} (\frac{m}{1-x^m}-\frac{n}{1-x^n}[/TEX],(m,n thuoc N^*,m khac n)

:)


1. [TEX]y =\sqrt[n]{(x+a1)(x+a2)...(x+a_n)} [/TEX]


[TEX]\Rightarrow \red \lim_{ x \to + \infty} \frac{y}{x} = 1 [/TEX]


[TEX]\huge A_1 = \lim_{x \to + \infty} ( y - x) \\ = \lim_{x \to +\infty } \frac{(a_1+a_2+..+a_n).x^{n-1} + B .x^{n-2} + .....}{y^{n-1} + y^{n-2}.x+..+x^{n-1} } \\ = \lim_{x \to + \infty} \frac{a_1+a_2+..+a_n + \frac{B}{x} + ...}{\frac{y^{n-1}}{x^{n-1}} + \frac{y^{n-2}}{x^{n-2}} + ...+1} \\ = \frac{a_1+a_2+..+a_n}{n} [/TEX]


2.

[TEX]A_2 =\lim_{x \to 1} \frac{m( 1 - x^n) - n(1-x^m)}{(1-x^n)(1-x^m)} \\ = \lim_{x \to 1} \frac{m(1-x^n) n(1-x^m)}{(1-x)^2} . \lim_{x\to 1} \frac{(1-x)^2}{(1-x^m)(1-x^n)} [/TEX]

Ta lại có :

[TEX]\Large A_{21} = \lim_{x \to 1} \frac{m(1-x^n) n(1-x^m)}{(1-x)^2} \\ = \lim_{x\to 1} \frac{ m(x^{n-1} + x^{n-2} +..+1) - n(x^{m-1}+x^{m-2}+...+1)}{1-x} \\ = \lim_{x \to 1} \frac{m( x^{n-1} - 1 + x^{n-2} - 1+ ...+x-1) - n( x^{m-1}-1 + x^{m-2}-1+...+x-1)}{1-x} [/TEX]

Mà ta có : [TEX]\bold \blue \lim_{x \to 1} \frac{x^a - 1}{x-1} = a (*)[/TEX]. Áp dụng vào bài toán trên ta có :

[TEX]A_{21} = -m ( n-1 + n-2 + n-3 +.. + 1) + n ( m-1 + m-2 + ..+ 1) \\ =\frac{-mn(n-1) + nm(m-1)}{2} = \frac{mn(m-n)}{2} [/TEX]

[TEX]\Large A_{22} = \lim_{x\to 1} \frac{1-x}{1-x^m} . \frac{1-x}{1-x^n} = \frac{1}{mn} \text{(Ap dung (*))}[/TEX]


[TEX]\Rightarrow A_2 = \frac{mn(m-n)}{2} . \frac{1}{mn} = \frac{m-n}{2}[/TEX]
 
Last edited by a moderator:
Top Bottom