Chịu khó nhân liên hợp 1 tí cho quen tay nha.
Ta có:
[TEX]n(\sqrt{n^2+2n}-2\sqrt{n^2+n}+n) = n((\sqrt{n^2+2n}-\sqrt{n^2+n})-(\sqrt{n^2+n}-n))[/TEX]
[TEX]= ... = \frac{-2n^3}{(\sqrt{n^2+2n}+\sqrt{n^2+n})(\sqrt{n^2+2n}+n)(\sqrt{n^2+n}+n)}[/TEX]
[TEX]=\frac{-2}{(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}) (\sqrt{1+\frac{2}{n}}+1)(\sqrt{1+\frac{1}{n}}+1)} \Large\longrightarrow^{n\rightarrow+\infty}\frac{-2}{8} =\frac{-1}{4}[/TEX]
Có thể kiểm tra bằng code Matlab:
HTML:
syms x
limit(x*((x^2+2*x)^.5-2*(x^2+x)^.5+x),x,inf)