Đặt $t=x-2011 ; x \to 2011 \Rightarrow t \to 0$
$I=lim_{t \to 0} \dfrac{(t+1)^{2012}-(1-t)^{2011}}{t}$
$=lim_{t \to 0} \dfrac{(t+1)^{2012}}{t}-lim_{t \to 0} \dfrac{(1-t)^{2011}}{t}$
Ta có :
$A = lim_{t \to 0} \dfrac{(t+1)^{2012}}{t} = 2012+lim_{t \to 0} \dfrac{1}{t}$
$B= lim_{t \to 0} \dfrac{(1-t)^{2011}}{t} = -2011+lim_{t \to 0} \dfrac{1}{t}$
$\Rightarrow I=A-B=4023$
-----------------------------------------
mình xin giải thích vì sao lại có $A=2012+lim_{t \to 0} \dfrac{1}{t}$
thật vậy ta xét khai triển $(t+1)^{2012} = 1+a_1t+a_2t^2+...+a_{2012}t^{2012}$
$\Rightarrow A=\lim_{t \to 0} [\dfrac{1}{t}+a_1+a_2t+a_3t^2+...+a_{2012}t^{2011}$
$=[\lim_{t \to 0} \dfrac{1}{t}]+a_1 = 2012+lim_{t \to 0} \dfrac{1}{t}$