$x^3+y^3=2x^2y^2$
$\Leftrightarrow \dfrac{x^3+y^3}{x^2y^2}=2$
$\Leftirghtarrow \dfrac{x}{y^2}+\dfrac{y}{x^2}=2$
$\Rightarrow (\dfrac{x}{y^2}+\dfrac{y}{x^2})^2=4$
$\Leftrightarrow (\dfrac{x}{y^2}+\dfrac{y}{x^2})^2-\dfrac{4}{xy}=4-\dfrac{4}{xy}$
$\Leftrightarrow (\dfrac{x}{y^2}-\dfrac{y}{x^2})^2=4(1-\dfrac{1}{xy})$
$\Leftrightarrow 1-\dfrac{1}{xy}=\dfrac{(\dfrac{x}{y^2}-\dfrac{y}{x^2})^2}{4}$
$\Leftrightarrow \sqrt{1-\dfrac{1}{xy}}=|\dfrac{\dfrac{x}{y^2}-\dfrac{y}{x^2}}{2}|$