bài này lạ lắm

D

daihoacuc

Đấy, đã ai thấy bài này lạ chưa

:-S :(( sao không ai chịu giúp vậy????
 
D

daihoacuc

Hix, đề rõ lắm mà. Bạn không hiểu chỗ nào vậy? Bài này nằm trong đề cương ôn của em tớ (toán lớp 10) đó
 
N

nguyenminh44

Hehehe, cuối cùng thì cũng ra rồi. Con này đúng là toán lớp 10 pàkon ạ
 
N

nguyenminh44

Bài này hay phết, các bạn cứ suy nghĩ tiếp đi :D . Gợi ý là dùng phương pháp tam thức bậc hai :D
 
T

theempire

Uhm, nhắc mới nhớ, bài này dùng tam thức bậc 2 thiệt, chỉ cần xét cái hàm số f(x) =(b+3) x^2 - 2c x + 2a + b - 3
Rồi chú ý f(0)f(1)<0 là xong
Còn câu b là dùng thêm g(x) = (b+3) x^2 - 2ax + 2c + b -3 rồi như câu a là xong, đúng là lớp nào giải bài lớp đó sẽ dễ hơn, mình không nghĩ đến cái dzụ này lun :D :D
 
F

final_fantasy_vii

theempire said:
Uhm, nhắc mới nhớ, bài này dùng tam thức bậc 2 thiệt, chỉ cần xét cái hàm số f(x) =(b+3) x^2 - 2c x + 2a + b - 3
Rồi chú ý f(0)f(1)<0 là xong
Còn câu b là dùng thêm g(x) = (b+3) x^2 - 2ax + 2c + b -3 rồi như câu a là xong, đúng là lớp nào giải bài lớp đó sẽ dễ hơn, mình không nghĩ đến cái dzụ này lun :D :D
sao em chả hỉu gì nhể, sao có cái hàm số f(x) :-/
 
N

nguyenminh44

Biến đổi [tex]c^2>(b+3)(2a+b-3)\Leftrightarrow c^2-2ab-b^2-6a+9>0 \Leftrightarrow a^2-6a+9+c^2-(a^2+2ab+b^2)>0 \Leftrightarrow (a-3)^2+c^2-(a+b)^2>0 \Leftrightarrow (a-3)^2-(a+b-c)(a+b+c)>0[/tex]
Đến đây thấy xuất hiện dạng [tex]\Delta'=B'^2-AC[/tex]
Xét đa thức [tex]f(x)= (a+b-c)x^2 -2(a-3)x +(a+b+c)[/tex]

Theo giả thiết ta có [tex]f(0)f(1)=(a+b+c)(2b+6)=3(a+b+c)(b+3)<0[/tex]

Chứng tỏ phương trình [tex]f(x)=0[/tex] có hai nghiệm phân biệt, hay [tex]\Delta'>0[/tex] Suy ra điều phải chứng minh.

Với câu b , chứng minh tương tự ta cũng có [tex]a^2>(b+3)(2c+b-3)[/tex]
Cộng vế với vế ta có [tex]a^2+c^2>(b+3)(2a+2b+2c-6)=2(b+3)(a+b+c-3)[/tex]

Cái khó của dạng này là tìm cho được tam thức bậc 2 đặc trưng.Thi đại học chắc không ra dạng này! :D :D
 
Top Bottom