bai luong giac hay

H

hetientieu_nguoiyeucungban

Tìm x thuộc (0;14) nghiệm đúng : cos3x-4cos2x+3cosx=4
pt[TEX]<=>4cos^{3}x-3cosx-4(cos2x+1)+3cosx=0[/TEX]

[TEX]<=>4cos^{3}x-8cos^{2}x=0[/TEX]

[TEX]<=>cosx=0[/TEX]

[TEX]<=>x=\frac{\pi }{2}+k\pi [/TEX],[TEX]k\epsilon Z[/TEX]

vì [TEX]x\epsilon [0;14][/TEX]

[TEX]0\leq \frac{\pi }{2}+k\pi \leq 14[/TEX]

[TEX]<=>\frac{-1}{2}\leq k\leq \frac{14-\frac{\pi }{2}}{\pi }[/TEX]

[TEX]<=>k=0,1,2,3[/TEX]

[TEX]<=>x=\frac{\pi }{2},x=\frac{3\pi }{2},x=\frac{5\pi }{2},x=\frac{7\pi }{2}[/TEX]
 
T

thuyan9i

sin^2010 + cos^2010=1
2sin5x+ 3cos8x=5
Tìm x thuộc (0;14) nghiệm đúng : cos3x-4cos2x+3cosx=4

1. [TEX]sin^{2010} x \leq sin^2 x[/TEX]
[TEX]cos^{2010} x \leq cos^2 x[/TEX]
Cộng vế........
dấu = ........
2. sử dụng đánh giá
[TEX]sin5x \leq 1[/TEX]
[TEX]2sin5x \leq 2[/TEX]
[TEX]cos8x \leq 1[/TEX]
[TEX]3cos8x \leq 3[/TEX]
Cộng vế và dấu "="
 
P

pe_chua

giải phương trình lượng giác

[TEX]\sqrt{(1+cos x ) tanx } - \sqrt{tan x - sin x } = 2 cos x \sqrt{tanx}[/TEX]
 
Last edited by a moderator:
D

duynhan1

[TEX]\sqrt{(1+cos x ) tanx } - \sqrt{tan x - sin x } = 2 cos x \sqrt{tanx}[/TEX]

[TEX]DK : \left{ cos x \not=0 \\ tanx \ge 0 \\ sin x ( \frac{1}{cos x} - 1 ) \ge 0 [/TEX]

[TEX]\Leftrightarrow \left{ sin x \ge 0 \\ cosx > 0[/TEX]

[TEX](pt) \Leftrightarrow \sqrt{tanx + sin x } = \sqrt{tanx - sin x} + 2 \sqrt{ sin x. cosx }[/TEX]

[TEX]\Leftrightarrow sin x = -sin x + 2 sin 2x + 4 \sqrt{sin^2 x - sin^2 x . cos x} [/TEX]

[TEX]\Leftrightarrow sin x ( 1 - 2 cos x ) = 2 sin x \sqrt{1- cosx} [/TEX]

[TEX]\Leftrightarrow \left[ sin x= 0 \\ 1 - 2 cos x = 2\sqrt{1- cos x}[/TEX]
 
Q

quyenuy0241

[TEX]\sqrt{(1+cos x ) tanx } - \sqrt{tan x - sin x } = 2 cos x \sqrt{tanx}[/TEX]

[tex]DKXD: \left{ cosx > 0 \\sinx \ge 0 [/tex]=))

[tex]PT \Leftrightarrow \sqrt{tanx(cosx+1)}-\sqrt{tanx(1-cosx)}=2cosx.\sqrt{tanx}[/tex]

[tex](*) tanx=0 \Leftrightarrow x= k \pi [/tex]

[tex](*) \sqrt{cosx+1}-\sqrt{1-cosx}=2cosx[/tex]

Bình phương :D

[tex]\Leftrightarrow 2-2\sqrt{1-cos^2x}=4cos^2x[/tex]

[tex] -sinx=cos2x [/tex]
 
Last edited by a moderator:
Top Bottom