bai` kho'''''''''''''''''''''

T

tuananh8

Cho ba số: x, y, z TM: x+y+z = 3. Tìm max của B = xy+xz+yz

có: [TEX]\frac{1}{2}[(x-y)^2+(y-z)^2+(z-x)^2] \geq 0[/TEX]

hay [TEX]x^2+y^2+z^2-xy-yz-zx \geq 0 \Rightarrow x^2+y^2+z^2 \geq xy+yz+zx[/TEX]

[TEX]\Rightarrow x^2+y^2+z^2+2(xy+yz+zx) \geq 3(xy+yz+zx)[/TEX]

[TEX](x+y+z)^2 \geq 3(xy+yz+zx)[/TEX]

[TEX]3(xy+yz+zx) \leq (x+y+z)^2=3^2=9[/TEX]

[TEX]xy+yz+zx \leq 3[/TEX]

Vậy [TEX]Min_{xy+yz+zx}=3[/TEX] khi [TEX]x=y=z=1[/TEX]
 
Top Bottom