Toán 11 Áp dụng BĐT tam giác:$∣a−b∣<c<a+b$

hhhhiiieeennnthanh

Học sinh
Thành viên
29 Tháng mười 2020
2
4
31
19
TP Hồ Chí Minh
trường thpt phan đăng lưu
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Áp dụng BĐT tam giác:∣a−b∣<c<a+b (với a,b,c là độ dài 3 cạnh của tam giác).
+ Tất cả các bộ ba khác nhau có giá trị bằng số đo 3 cạnh là:
(2;3;4),(2;4;5),(2;5;6),(3;4;5),(3;4;6),(3;5;6),(4;5;6).
⇒ Có 7 tam giác không cân.
+ Xét các tam giác cân có cạnh đáy bằng a, cạnh bên bằng b⇒a<2b
TH1: b=1⇒a<2⇒a=1: Có 1 tam giác cân.
TH2:b=2⇒a<4⇒a∈{1;2;3}: Có 3 tam giác cân.
TH3: b=3⇒ a< 6⇒a∈{1;2;3;4;5}: Có 5 tam giác cân.
TH4:b=4⇒a<8⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH5:b=5⇒a<10⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH6:b=6⇒a<12⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
⇒ Có1+3+5+6.3=27 tam giác cân.
⇒ Không gian mẫu: n(Ω)=7+27=34
Gọi A là biến cố: “phần tử được chọn là một tam giác cân”⇒ n(A)=C271=27
 

chi254

Cựu Mod Toán
Thành viên
12 Tháng sáu 2015
3,306
3
4,627
724
Nghệ An
THPT Bắc Yên Thành
Áp dụng BĐT tam giác:∣a−b∣<c<a+b (với a,b,c là độ dài 3 cạnh của tam giác).
+ Tất cả các bộ ba khác nhau có giá trị bằng số đo 3 cạnh là:
(2;3;4),(2;4;5),(2;5;6),(3;4;5),(3;4;6),(3;5;6),(4;5;6).
⇒ Có 7 tam giác không cân.
+ Xét các tam giác cân có cạnh đáy bằng a, cạnh bên bằng b⇒a<2b
TH1: b=1⇒a<2⇒a=1: Có 1 tam giác cân.
TH2:b=2⇒a<4⇒a∈{1;2;3}: Có 3 tam giác cân.
TH3: b=3⇒ a< 6⇒a∈{1;2;3;4;5}: Có 5 tam giác cân.
TH4:b=4⇒a<8⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH5:b=5⇒a<10⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
TH6:b=6⇒a<12⇒a∈{1;2;3;4;5;6}: Có 6 tam giác cân.
⇒ Có1+3+5+6.3=27 tam giác cân.
⇒ Không gian mẫu: n(Ω)=7+27=34
Gọi A là biến cố: “phần tử được chọn là một tam giác cân”⇒ n(A)=C271=27
Giả sử gọi 3 cạnh của tam giác cân lần lượt là $a;b;b$
Ta có điều kiện để tạo thành 1 tam giác là:
Tổng 2 cạnh lớn hơn cạnh còn lại và Hiệu 2 cạnh nhỏ hơn 2 cạnh còn lại
$\left\{\begin{matrix} a + b > b \\ b + b > a \\ b - a < b \\ b - b < a \end{matrix}\right.
\Leftrightarrow 2b > a$
Vì cách đẳng thức còn lại là hiển nhiên
Đến đây, em chỉ việc chọn $b$ và xét xem $a$ có thể nhận giá trị nào

Có gì không hiểu thì em hỏi lại nha
Ngoài ra, em tìm hiểu thêm kiến thức tại topic này nha
https://diendan.hocmai.vn/threads/t...c-mon-danh-cho-ban-hoan-toan-mien-phi.827998/
 
Top Bottom