You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser.
cho a,b,c dương.cm
a/(b+c) + b/(c+a) + c/(b+a) >= 3/2 (áp dụng bất đẳng thức cauchy)
Đây là bất đẳng thức Nesbitt
[TEX]\frac{a}{b+c} \ + \ \frac{b}{c+a} \ + \ \frac{c}{b+a} \ \geq \ \frac{3}{2}[/TEX]
Chứng minh :
[TEX]VT \ = \ \frac{a}{b+c} \ + \ \frac{b}{c+a} \ + \ \frac{c}{b+a} [/TEX]
[TEX]= \ \left(\frac{a}{b+c} \ + \ 1 \right) \ + \ \left(\frac{b}{c+a} \ + \ 1\right) \ + \ \left(\frac{c}{b+a} \ + \ 1\right) \ - \ 3[/TEX]
[TEX]= \ \frac{a+b+c}{b+c} \ + \ \frac{a+b+c}{c+a} \ + \ \frac{a+b+c}{b+a} \ - \ 3[/TEX]
[TEX]= \ \left(a+b+c \right)\left(\frac{1}{b+c} \ + \ \frac{1}{c+a} \ + \ \frac{1}{b+a} \right) \ - \ 3[/TEX]
[TEX]= \ \frac{2\left(a+b+c \right)\left(\frac{1}{b+c} \ + \ \frac{1}{c+a} \ + \ \frac{1}{b+a} \right)}{2} \ - \ 3[/TEX]
[TEX]= \ \frac{\left[\left( a+b\right)+\left( b+c\right)+\left(c+a \right) \right]\left(\frac{1}{b+c} \ + \ \frac{1}{c+a} \ + \ \frac{1}{b+a} \right)}{2} \ - \ 3 \ \ \ \geq \ \frac{9}{2} \ - \ 3 \ = \ \frac{3}{2} \ = \ VP \ (dccm)[/TEX]