ai giúp mình nhá

T

tnm1994

Câu 2

[TEX]I=\int \frac{1-\sqrt{x+1}}{1+\sqrt[3]{x+1}}dx[/TEX]
Đặt [TEX]t=\sqrt[6]{x+1} \Rightarrow t^6=x+1 \Rightarrow 6t^5dt=dx[/TEX]
[TEX]t^2=\sqrt[3]{x+1}; t^3=\sqrt{x+1}[/TEX]
[TEX]I=6\int \frac{(1-t^3)t^5}{1+t^2}dt[/TEX]
[TEX]=6\int \frac{-t^8+t^5}{t^2+1}dt[/TEX]
[TEX]=6\int (-t^6+t^4+t^3-t^2-t+1+\frac{t-1}{t^2+1})dt[/TEX]
Đặt [TEX]J=\int \frac{t-1}{t^2+1}dt=\int \frac{tdt}{t^2+1}-\int \frac{dt}{t^2+1}[/TEX]
Tới đây đều là dạng cơ bản!
 
H

hoanghondo94

Câu 1:

[TEX]I=\int\frac{1}{2}\frac{x^2+x+1-(x^2-x+1)}{(x^2+x+1).(x^2-x+1)}dx[/TEX]
[TEX]=\frac{1}{2}\int\frac{dx}{x^2+x+1}-\int\frac{dx}{x^2-x+1})[/TEX]
[TEX]=\frac{1}{2}.\int\frac{dx}{(x+\frac{1}{2})^2+\frac{3}{4})}-\int\frac{dx}{(x-\frac{1}{2})^2+\frac{3}{4})})[/TEX]
[TEX]=[\frac{1}{sqrt{3}}.arctan(\frac{2(x+\frac{1}{2})}{\sqrt{3}})-\frac{1}{sqrt{3}}.arctan(\frac{2(x-\frac{1}{2})}{\sqrt{3}})]=...................[/TEX]
 
Top Bottom