Ai giúp mình giải 2 bài này với!

T

thanhtrungt7a3

Last edited by a moderator:
T

thaonguyenkmhd

2) Cho $B=\frac{5n+11}{3n+2}$
a/ Tìm n Є Z để B có giá trị nguyên.
b/ Với n Є N, tìm MaxB.

a/ $B=\frac{5n+11}{3n+2}$

Để B có giá trị nguyên thì $(5n+11) \vdots (3n+2)$

\Rightarrow $ 3n + 2+2n+9 \vdots 3n+2$

\Rightarrow $2n+9 \vdots 3n+2$

\Rightarrow $3(2n+9) \vdots 3n+2$

\Rightarrow $6n+27 \vdots 3n+2$

\Rightarrow $2(3n+2)+23 \vdots 3n+2$

\Rightarrow $23 \vdots 3n+2$

Do n $\in Z$ \Rightarrow $ 3n+2 \in Ư(23)$

\Rightarrow $3n+2 \in$ { -23; -1; 1; 23 }

\Rightarrow $3n \in$ { -25; -3; -1; 21 }

\Rightarrow $n \in$ { -1; 7 } ( do $n \in Z$ )

* Thử lại
- Với n = -1 ta có $B=\frac{5(-1)+11}{3(-1)+2} = \frac{6}{-1} = -6$ ( t/m )

- Với n = 7 ta có $B=\frac{5.7+11}{3.7+2} = \frac{46}{23} = 2$ ( t/m )

Vậy $ n \in$ { -6; 2 }​
 
H

harrypham

Bài 1. Rút gọn $\dfrac{ \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1}{\dfrac 12 + \dfrac13 + \dfrac14 + \cdots + \dfrac1 {2012}+ \dfrac 1 {2013}}$

SOLUTION: Ta có
$$\begin{aligned} \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1 & = \dfrac{2012-2011}{2012}+ \dfrac{2012-2010}{2011}+ \dfrac{2012-2009}{2010}+ \cdots + \dfrac{2012-1}{2}+ 2012 \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - \dfrac{2011}{2012}- \dfrac{2010}{2011} - \cdots - \dfrac{1}{2} \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - \left( 1- \dfrac1{2012}+1- \dfrac1{2011}+ \cdots + 1- \dfrac{1}{2} \right) \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - 2011+ \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) \\ & = 2013 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right)+ \dfrac{2013}{2013} \\ & = 2013 \left( \dfrac1{2013}+ \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) \end{aligned}$$
Vậy $\dfrac{ \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1}{\dfrac 12 + \dfrac13 + \dfrac14 + \cdots + \dfrac1 {2012}+ \dfrac 1 {2013}}= \boxed{2013}.$
 
Top Bottom