Bài 1. Rút gọn $\dfrac{ \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1}{\dfrac 12 + \dfrac13 + \dfrac14 + \cdots + \dfrac1 {2012}+ \dfrac 1 {2013}}$
SOLUTION: Ta có
$$\begin{aligned} \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1 & = \dfrac{2012-2011}{2012}+ \dfrac{2012-2010}{2011}+ \dfrac{2012-2009}{2010}+ \cdots + \dfrac{2012-1}{2}+ 2012 \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - \dfrac{2011}{2012}- \dfrac{2010}{2011} - \cdots - \dfrac{1}{2} \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - \left( 1- \dfrac1{2012}+1- \dfrac1{2011}+ \cdots + 1- \dfrac{1}{2} \right) \\ & = 2012 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) +2012 - 2011+ \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) \\ & = 2013 \left( \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right)+ \dfrac{2013}{2013} \\ & = 2013 \left( \dfrac1{2013}+ \dfrac{1}{2012}+ \dfrac 1{2011}+ \cdots + \dfrac1{2} \right) \end{aligned}$$
Vậy $\dfrac{ \dfrac 1 {2012} + \dfrac 2 {2011} + \dfrac 3 {2010} + \cdots + \dfrac{2011}2 + \dfrac{2012} 1}{\dfrac 12 + \dfrac13 + \dfrac14 + \cdots + \dfrac1 {2012}+ \dfrac 1 {2013}}= \boxed{2013}.$