Trên mặt phẳng bờ BC chứa A vẽ tia Bx sao cho [TEX]\hat{CBx}=20^o[/TEX]; Bx cắt AC tại D. AE vuông vs Bx.
[TEX]\large\Delta BDC ~\large\Delta ABC (g.g)[/TEX]
\Rightarrow[TEX]\frac{BD}{AB}=\frac{BC}{AC}=\frac{DC}{BC}[/TEX]
\Rightarrow BD=BC=a; [TEX]DC=\frac{BD}{AB}.BC=\frac{a^2}{b}[/TEX]
[TEX]AD=AC-DC=b-\frac{a^2}{b}[/TEX]
[TEX] \large\Delta ABE;\hat{AEB}=0^o; \hat{ABE}=60^o[/TEX]
\Rightarrow[TEX] BE=\frac{AB}{2}=\frac{b}{2} \Rightarrow DE=BE-BD=\frac{b}{2}-a[/TEX]
[TEX] AE^2=AB^2-BE^2=\frac{3}{4}b^2[/TEX]
[TEX]\large\Delta ADE; \hat{AED}=90^o[/TEX]
\Rightarrow [TEX] AE^2+DE^2=AD^2[/TEX]
\Leftrightarrow [TEX] \frac{3}{4}b^2+(\frac{b}{2}-a)^2=(b-\frac{a^2}{b})^2[/TEX]
\Leftrightarrow[TEX]a^3+b^3=3ab^2[/TEX]