A=x^2+x+1>0 với mọi x

T

transformers123

a/ $x^2+x+1 = x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4} = (x+\dfrac{1}{2})^2+\dfrac{3}{4} > 0$
b/ $x^2-xy+y^2=x^2-2.\dfrac{y}{2}+\dfrac{y^2}{4}+\dfrac{3y^2}{4} = (x-\dfrac{y}{2})^2+\dfrac{3y^2}{4}$
vì $(x-\dfrac{y}{2})^2 \ge 0$ mà $\dfrac{3y^2}{4} > 0$ (do $x, y \not = 0$)
nên: $(x-\dfrac{y}{2})^2+\dfrac{3y^2}{4} > 0 \rightarrow \mathfrak{dpcm}$
 
Last edited by a moderator:
Top Bottom