_10_ BĐT Đào Hải Long

B

bupbexulanxang

P

pokco

c/m
a/(b+c) + b/(c+a) + c/(a+b) >= 3/2
với a,b,c >0

(a\(b+c))+1+(b\(c+a))+1+(c\(a+b))+1>=3\2+1

2x(a+b+c)x(1\(b+c)+1\(c+a)+1\(a+b))>=9

((a+b)+(b+c)+(c+a))x(1\(a+b)+1\(b+c)+1\(c+a))>=9

ta có theo cosy

(a+b)+(b+c)+(c+a)>=.....................>=0

tương tự với 1\(a+b)...................>=0

sau đó bạn nhân 2 vế của BPT

sẽ được điều cần phải CM dấu = sảy ra khi a=b=c

thông cảm nhé tui không biêt viết căn

Cũng có thể bạn sử dụng BĐT phụ

(1\a)+(1\b)+(1\c)>=9\(a+b+c)
 
H

hg201td

Cho a,b,c>0 đôi 1 # nhau
c/m
(a^3 - b^3)/(a-b)^3 + (b^3 -c^3)/(b-c)^3 + (c^3 - a^3)/ (c-a)^3 >= 9/4
chú thích >= ::là lớn hơn hoặc bằng
/ :: chia
^:: mũ:D

bài tiếp
c/m
a/(b+c) + b/(c+a) + c/(a+b) >= 3/2
với a,b,c >0
[TEX]\frac{a^3-b^3}{(a-b)^3}+\frac{b^3-c^3}{(b-c)^3}+\frac{c^3-a^3}{(c-a)^3} \geq \frac{9}{4}[/TEX]
2/[TEX]\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}[/TEX]
Áp dụng BĐt
[TEX](a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 9[/TEX]
[TEX]\Rightarrow ((a+b)+(a+c)+(b+c))(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq 9[/TEX]
[TEX]\Rightarrow (a+b+c)( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a})\geq \frac{9}{2} [/TEX]
[TEX]\Rightarrow 3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{9}{2}[/TEX]

[TEX]\Rightarrow \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}[/TEX]
 
P

pokco

Cho a,b,c>0 đôi 1 # nhau
c/m
(a^3 - b^3)/(a-b)^3 + (b^3 -c^3)/(b-c)^3 + (c^3 - a^3)/ (c-a)^3 >= 9/4
chú thích >= ::là lớn hơn hoặc bằng
/ :: chia
^:: mũ
cách 2
[(a^3-b^3)\(a-b)^3 -3\4]+[(b^3-c^3)\(b-c)^3-3\4]+[(c^3-a^3)\(c-a)^3 -3\4]>=0

sau đó thì quy đồng từng ngoặc 1

tử phân tích thành nhân tử sau đó rút gọn cho mấu

điều cần phải CM

thông cảm nhé
tui k biết gõ công thức
 
O

o09xteen0o

chời ạh zup' thì zup' cho trót.
chỉ gợi ý em đâu bít làm.
mà làm j` thếy cak1 ở đâu mừ lại có cák 2.??
 
T

thocontinhnghich_2310

ui da.sao lại vậy chứ.Mình làm sai ở đâu kô biết,sao lại ra nó luôn luôn >3 chứ kô thế nào >=9/4.Coi xem đúng hem nha:a^3-b^3=(a-b)^3+3ab(a-b).
Tức là (a^3 - b^3)/(a-b)^3=1+3*ab/[(a-b)^2](có thể triệt tiêu tử và mẫu cho a-b vì a-b#0)
suy ra [(a^3 - b^3)/(a-b)^3]>1(vì a,b,(a-b)^2 dương)
 
O

o09xteen0o

haha, nhầm to ở chỗ: a^3-b^3= (a-b)(a^2+b^2+ab). chứ hôk phải = 1+3ab.
với lại từ dòng trên=> dòng dưới thật sự hôk hiểu
 
T

thocontinhnghich_2310

ui da.sao lại vậy chứ.Mình làm sai ở đâu kô biết,sao lại ra nó luôn luôn >3 chứ kô thế nào >=9/4.Coi xem đúng hem nha:a^3-b^3=(a-b)^3+3ab(a-b).
Tức là (a^3 - b^3)/(a-b)^3=1+3*ab/[(a-b)^2](có thể triệt tiêu tử và mẫu cho a-b vì a-b#0)
suy ra [(a^3 - b^3)/(a-b)^3]>1(vì a,b,(a-b)^2 dương)
 
T

thocontinhnghich_2310

kô.Bạn hiểu sai ý mình rùi.tức là thế này:(a-b)^3=a^3 -3a^2b+3ab^2-b^3=(a^3-b^3)-3ab(a-b)
suy ra a^3-b^3=(a-b)^3+3ab(a-b)
Sao lại kô hiểu dòng đó.thế này nha:vì a,b>0
*nếu a>=b thì 3ab(a-b)>=0 nên (a^3-b^3)>(a-b)^3
*nếu a<b thì 3ab(a-b)<=0 nên (a^3-b^3)<(a-b)^3<0 suy ra |a^3-b^3|>|(a-b)^3|
hay [(a^3 - b^3)/(a-b)^3]>1
Hiểu chưa?đúng kô??????????????????
 
O

o09xteen0o

thế nèy nhé, sai ở đêy nè:
a>=b nhưng a dương, b âm thì 3ab(a-b) cũng bé hơn 0
tg tự, a<b nhưng a âm, b dương thì 3ab(a-b) cũng bé hơn 0
hôk có điều kiện a,b>=0 nên hôk áp dung đc như thế
thê' nào? đúng chứ, hjj
 
Top Bottom