[tex]A=\frac{1}{x-2}+\frac{x^{2}-x-2}{x^{2}-7x+10}-\frac{2x-4}{x-2} =\frac{1}{x-2}+\frac{x^{2}-x-2}{\left ( x-2 \right )\left ( x-5 \right )}-\frac{2x-4}{x-5} =\frac{\left ( x-5 \right )+\left ( x^{2}-x-2 \right )-\left ( 2x-4 \right )\left ( x-2 \right )}{\left ( x-2 \right )\left ( x-5 \right )} =\frac{-\left ( x^{2}-8x+15 \right )}{\left ( x-2 \right )\left ( x-5 \right )} =\frac{-\left ( x-3 \right )\left ( x-5 \right )}{\left ( x-2 \right )\left ( x-5 \right )} =\frac{3-x}{x-2}\\ để A nguyên\Rightarrow \left ( 3-x \right ) chia hết \left ( x-2 \right ) x-2 thuộc Ư\left ( 5 \right )={-5;-1;1;5} x-2=-5\\\Leftrightarrow x=-3 x-2=-1\\\Leftrightarrow x=1 x-2=1\\\Leftrightarrow x=3 x-2=5\\\Leftrightarrow x=8[/tex]