[tex]VT=\frac{n+1}{n+2}.\frac{C_{n+1}^{k}+C_{n+1}^{k+1}}{C_{n+1}^{k}.C_{n+1}^{k+1}} \\ =\frac{n+1}{n+2}.C_{n+2}^{k+1}.\frac{1}{C_{n+1}^{k}.C_{n+1}^{k+1}} \\ =\frac{n+1}{n+2}.\frac{(n+2)!}{(k+1)!.(n+2-k-1)!}.\frac{k!(n+1-k)!.(k+1)!.(n+1-k-1)!}{(n+1)!.(n+1)!} \\ =\frac{n+1}{n+2}.\frac{(n+2)(n+1)!}{(k+1)!.(n+1-k)!}.\frac{k!.(k+1)!.(n+1-k)!.(n-k)!}{(n+1)!^2} \\ =\frac{(n+1).k!.(n-k)!}{(n+1)!} \\ =\frac{k!(n-k)!}{n!} \\ =\frac{1}{C_{n}^{k}}=VP[/tex]