S
songdzianhem


B1: cho a;b>0.CM [TEX]\frac{1}{4a^2+4b^2}+\frac{1}{8ab}\geq\frac{1}{(a+b)^2}[/TEX]
B2:cho a;b;c;d>0.CM [TEX]\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+ \frac{d+b}{d+a} \geq4[/TEX]
B3:cho a,b,c>0.CM[TEX]\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a} \geq \frac{3}{a+b+c}[/TEX]
B4:cho a,b,c>0.CM[TEX]\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\geq\frac{9}{4(a+b+c)}[/TEX]
B2:cho a;b;c;d>0.CM [TEX]\frac{a+c}{a+b}+\frac{b+d}{b+c}+\frac{c+a}{c+d}+ \frac{d+b}{d+a} \geq4[/TEX]
B3:cho a,b,c>0.CM[TEX]\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a} \geq \frac{3}{a+b+c}[/TEX]
B4:cho a,b,c>0.CM[TEX]\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\geq\frac{9}{4(a+b+c)}[/TEX]
Last edited by a moderator: