Tìm m để hàm số có 2 cực trị x1, x2

LN V

Học sinh tiến bộ
Thành viên
TV ấn tượng nhất 2017
21 Tháng sáu 2017
476
888
184
23
Hà Nội
THPT Thanh Thủy
[tex]y=-\frac{1}{3}x^{3} + \left ( 3m-2 \right )x^{2} + \left ( 3m^{2} -5m +2 \right )x +m[/tex]
có 2 điểm cực trị x1, x2 thỏa x1, x2>0
$y'=-x^2+2(3m-2)x+(3m^2-5m+2)$
Để pt có 2 cực trị thì $\Delta' >0$
Để $x_1;x_2>0$ thì: $\left\{\begin{matrix} x_1+x_2>0 \\ x_1x_2>0 \end{matrix}\right.$
Đến đây bn dùng Viet thay $x_1+x_2$ và $x_1x_2$ để tìm $m$ nhé
 
Top Bottom