Ta có: [tex]x^2+2xy+6x+6y+2y^2+8=0\\\Leftrightarrow [( x^2+2xy+y^2) +6(x+y) +9]+y^2-1=0\\\Leftrightarrow ( x+y+3 )^2=1-y^2[/tex]
Vì [tex]1-y^2\leq 1\Rightarrow (x+y+3)^2\leq 1[/tex]
Do đó [tex]-1\leq x+y+3\leq 1\Rightarrow -4\leq x+y\leq -2\Rightarrow 2012\leq B\leq 2014[/tex]
+, Để $B=2012$ thì [tex]\left\{\begin{matrix} x+y=-4 & \\ 1-y^2=1 & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-4 & \\ y=0 & \end{matrix}\right.[/tex]
+, Để $B=2014$ thì [tex]\left\{\begin{matrix} x+y=-2 & \\ 1-y^2=1 & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=-2 & \\ y=0 & \end{matrix}\right.[/tex]
Vậy...................