Giải nhanh đề thi THPT 2017 - Nhận quà nhanh
Chọn môn để bắt đầu: Tiếng anh (đã bắt đầu)

Toán Hình 9 giúp mình phần c

Thảo luận trong 'Đường tròn' bắt đầu bởi fcnoname1230, 20 Tháng ba 2017.

Lượt xem: 114

  1. fcnoname1230

    fcnoname1230 Học sinh chăm học Thành viên

    Tham gia ngày:
    28 Tháng hai 2017
    Bài viết:
    161
    Đã được thích:
    167
    Điểm thành tích:
    91
    Giới tính:
    Nam
    Nghề nghiệp:
    học sinh
    Nơi ở:
    Thế giới One Piece - Team Hải Dương
    Sở hữu bí kíp ĐỖ ĐẠI HỌC ít nhất 24đ - Đặt chỗ ngay!

    [Nhận đăng ký] Cuộc thi Tìm kiếm Mr & Miss HMF



    Cho tam giác ABC nội tiếp (O)(AB<AC). Hai tiếp tuyến tại B và C cắt nhau tại M. AM cắt (O) tại D. E là trung điểm AD. EC cắt (O) tại F. CMR:
    1) tứ giác OEBM nội tiếp
    2) MB^2=MA.MD
    3) BF// AM
     
  2. iceghost

    iceghost Mod Toán + tiếng Anh Thành viên BQT TV BQT xuất sắc nhất 2016

    Tham gia ngày:
    20 Tháng chín 2013
    Bài viết:
    2,503
    Đã được thích:
    1,313
    Điểm thành tích:
    351
    Giới tính:
    Nam
    Nghề nghiệp:
    Bóng ma $\color{blue}{\Huge{\Huge{❅}}}$ băng giá
    Nơi ở:
    THCSTTH, Củ Chi
    c) Bạn CM $EBMC$ nt, rồi $EOCM$ nt, suy ra $EBMCO$ nt, suy ra $EBMC$ nt, suy ra $\widehat{MEC} = \widehat{MBC}$
    Mà $\widehat{MEC} = \widehat{AEF}$ (đối đỉnh) và $\widehat{MBC} = \widehat{BFC}$ (góc nt = góc tạo bởi tia tiếp tuyến và dây cung)
    Suy ra $\widehat{AEF} = \widehat{BFC}$ hay $BF \parallel AM$
     
  3. fcnoname1230

    fcnoname1230 Học sinh chăm học Thành viên

    Tham gia ngày:
    28 Tháng hai 2017
    Bài viết:
    161
    Đã được thích:
    167
    Điểm thành tích:
    91
    Giới tính:
    Nam
    Nghề nghiệp:
    học sinh
    Nơi ở:
    Thế giới One Piece - Team Hải Dương
    chứng minh thế nào để ra được tứ giác EBMC nội tiếp hả bạn?
     
  4. iceghost

    iceghost Mod Toán + tiếng Anh Thành viên BQT TV BQT xuất sắc nhất 2016

    Tham gia ngày:
    20 Tháng chín 2013
    Bài viết:
    2,503
    Đã được thích:
    1,313
    Điểm thành tích:
    351
    Giới tính:
    Nam
    Nghề nghiệp:
    Bóng ma $\color{blue}{\Huge{\Huge{❅}}}$ băng giá
    Nơi ở:
    THCSTTH, Củ Chi
    Ngũ giác $BEOCM$ nt nên suy ra $EBMC$ nt thôi bạn
     
    fcnoname1230 thích bài này.

CHIA SẺ TRANG NÀY