[đại số 7] Tìm x

T

tuyetmai233

Last edited by a moderator:
N

nguyenbahiep1

a)

[TEX]|\frac{1}{7} + 2x| = x+5 \\ dk : x > -5 \\ TH_1 : \frac{1}{7} + 2x = x+5 \Rightarrow x = \frac{34}{7} (T/M) \\ TH_2 : \frac{1}{7} + 2x = -x-5 \Rightarrow x = -\frac{12}{7} (T/M)[/TEX]

b)

[TEX]\frac{1}{2}.2^x + 2^x.4 = 288 \\ 2^x + 8.2^x = 576 \\ 9.2^x = 576 \\ 2^x = 64 = 2^6 \Rightarrow x = 6[/TEX]
 
Last edited by a moderator:
H

hiensau99

a, $/ \dfrac{1}{7}+2x / =x+5$

$\left[\begin{matrix} \dfrac{1}{7}+2x = x+5 \\ \dfrac{1}{7}+2x = -x-5 \end{matrix}\right. $

Ta có $/ \dfrac{1}{7}+2x / \ge 0 \to x+5 \ge 0 \to x \ge -5$

+ Nếu $\dfrac{1}{7}+2x = x+ 5 \to 2x-x = 5 - \dfrac{1}{7} \to x= 4 \dfrac{6}{7}$ (TMĐK)

+ Nếu $\dfrac{1}{7}+2x = -x-5 \to 2x+x= -5-\dfrac{1}{7} \to 3x= -5 \dfrac{1}{7} \to x= -1 \dfrac{5}{7} $ (TMĐK)

Vậy $x \in$ {$4 \dfrac{6}{7}; -1 \dfrac{5}{7} $}

b, $\dfrac{1}{2}.2^x+ 2^{x+2} =2^8+2^5$

$ \to 2^{x-1}+ 2^{x+2} =2^5. (2^3+1)$

$ \to 2^{x-1}. (2^3+1) =2^5. (2^3+1)$

$ \to 2^{x-1} =2^5$

$ \to x-1 =5$

$ \to x=6$

c, $\sqrt{1,69}.(2. \sqrt{x}+\frac{81}{121})=\frac{13}{10}$

$\to \frac{13}{10} .(2. \sqrt{x}+\frac{81}{121})=\frac{13}{10}$

$\to 2. \sqrt{x}+\frac{81}{121}= 1$

$\to 2. \sqrt{x}= 1-\frac{81}{121}$

$\to 2. \sqrt{x}= \frac{40}{121}$

$\to \sqrt{x}= \frac{40}{121} : 2$

$\to \sqrt{x}= \frac{20}{121} $

$\to x= \frac{400}{14641} $
 
Top Bottom