Toán 9 Bất đẳng thức

Thảo luận trong 'Tổng hợp Đại số' bắt đầu bởi Củ Ấu Gai, 16 Tháng bảy 2019.

Lượt xem: 487

  1. Củ Ấu Gai

    Củ Ấu Gai Học sinh mới Thành viên

    Bài viết:
    17
    Điểm thành tích:
    16
    Nơi ở:
    Hải Dương
    Trường học/Cơ quan:
    Chuyên Nguyễn Trãi
    Sở hữu bí kíp ĐỖ ĐẠI HỌC ít nhất 24đ - Đặt chỗ ngay!

    Đọc sách & cùng chia sẻ cảm nhận về sách số 2


    Chào bạn mới. Bạn hãy đăng nhập và hỗ trợ thành viên môn học bạn học tốt. Cộng đồng sẽ hỗ trợ bạn CHÂN THÀNH khi bạn cần trợ giúp. Đừng chỉ nghĩ cho riêng mình. Hãy cho đi để cuộc sống này ý nghĩa hơn bạn nhé. Yêu thương!

    Cho 3 số thực không âm [tex]x,y,z[/tex] với [tex]x+y+z=6[/tex] . Tìm giá trị nhỏ nhất:
    [tex]M=\sqrt{x^2+16}+\sqrt{y^2+16}+\sqrt{z^2+16}[/tex]
     
    Last edited: 16 Tháng bảy 2019
  2. Tư Âm Diệp Ẩn

    Tư Âm Diệp Ẩn Học sinh tiến bộ Thành viên HV CLB Hội họa Hội viên CLB Ngôn từ

    Bài viết:
    1,786
    Điểm thành tích:
    251
    Nơi ở:
    Vĩnh Phúc
    Trường học/Cơ quan:
    THCS Đại Đồng

    Áp dụng BĐT Mincopxki ta có:
    [tex]M=\sqrt{x^2+16}+\sqrt{y^2+16}+\sqrt{z^2+16}\geq \sqrt{(x+y+z)^2+(4+4+4)^2}=\sqrt{6^2+12^2}=6\sqrt{5}[/tex]
    Dấu "=" xảy ra <=> x = y= z = 2
     
    Củ Ấu Gai thích bài này.
  3. Quân (Chắc Chắn Thế)

    Quân (Chắc Chắn Thế) Vi phạm nhiều lần Thành viên

    Bài viết:
    604
    Điểm thành tích:
    111
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường Mần Non

    Bất đẳng thức Mincopxki là j thế ạ ?
     
  4. Tư Âm Diệp Ẩn

    Tư Âm Diệp Ẩn Học sinh tiến bộ Thành viên HV CLB Hội họa Hội viên CLB Ngôn từ

    Bài viết:
    1,786
    Điểm thành tích:
    251
    Nơi ở:
    Vĩnh Phúc
    Trường học/Cơ quan:
    THCS Đại Đồng

    Đại loại là như này
    [tex]\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\geq \sqrt{(a+c+e)^2+(b+d+f)^2}[/tex]
    Cách chứng minh bạn có thể tham khảo thêm ở gg
     
    thaohien8cQuân (Chắc Chắn Thế) thích bài này.
  5. Củ Ấu Gai

    Củ Ấu Gai Học sinh mới Thành viên

    Bài viết:
    17
    Điểm thành tích:
    16
    Nơi ở:
    Hải Dương
    Trường học/Cơ quan:
    Chuyên Nguyễn Trãi

    Mình nhầm giá trị lớn nhất! Xin lỗi bạn nha, giải hộ mình nhé!
    Cho 3 số thực không âm [tex]x,y,z[/tex] với [tex]x+y+z=6[/tex] . Tìm giá trị lớn nhất:
    [tex]M=\sqrt{x^2+16}+\sqrt{y^2+16}+\sqrt{z^2+16}[/tex]
     
  6. Tư Âm Diệp Ẩn

    Tư Âm Diệp Ẩn Học sinh tiến bộ Thành viên HV CLB Hội họa Hội viên CLB Ngôn từ

    Bài viết:
    1,786
    Điểm thành tích:
    251
    Nơi ở:
    Vĩnh Phúc
    Trường học/Cơ quan:
    THCS Đại Đồng

    Xin lỗi bạn, mình tìm được min thôi, chưa biết tìm max
     
  7. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Bạn hãy chứng minh giúp mình rằng [tex]\sqrt{x^2+16}\leq \frac{\sqrt{13}-2}{3}.x+4[/tex] bằng biến đổi tương đương nhé!
    Sau đó chứng minh tương tự với y và z sau đó cộng lại là đc
     
  8. Tư Âm Diệp Ẩn

    Tư Âm Diệp Ẩn Học sinh tiến bộ Thành viên HV CLB Hội họa Hội viên CLB Ngôn từ

    Bài viết:
    1,786
    Điểm thành tích:
    251
    Nơi ở:
    Vĩnh Phúc
    Trường học/Cơ quan:
    THCS Đại Đồng

    sao bạn lại tìm ra được điều trên vậy? ý mình là [tex]\sqrt{x^2+16}\leq \frac{\sqrt{13}-2}{3}x+4[/tex]?
     
  9. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Bạn đoán đc là dấu bằng xảy ra khi 1 số = 6, 2 số còn lại = 0 đúng ko?
    Vậy thì bạn giả sử [tex]\sqrt{x^2+16}=kx+m[/tex] với k và m là số thực nào đó.
    Lần lượt thay x = 0 và x = 6 vào thì được[tex]k=\frac{\sqrt{13}-2}{3},m=4[/tex].
    Xong rồi thay vào và biến đổi tương đương thôi!:)
     
    ankhongu, thaohien8cTư Âm Diệp Ẩn thích bài này.
  10. Quân (Chắc Chắn Thế)

    Quân (Chắc Chắn Thế) Vi phạm nhiều lần Thành viên

    Bài viết:
    604
    Điểm thành tích:
    111
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường Mần Non

    Tưởng dấu bằng xảy ra khi x=y=z=2
     
  11. Tư Âm Diệp Ẩn

    Tư Âm Diệp Ẩn Học sinh tiến bộ Thành viên HV CLB Hội họa Hội viên CLB Ngôn từ

    Bài viết:
    1,786
    Điểm thành tích:
    251
    Nơi ở:
    Vĩnh Phúc
    Trường học/Cơ quan:
    THCS Đại Đồng

    x = y = z = 2 là min mà bạn, bạn ấy đang tìm max
     
    Quân (Chắc Chắn Thế) thích bài này.
  12. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Cái này áp dụng với đa số các bất đẳng thức đối xứng mà có điểm rơi đạt tại biên nhé!
    Ví dụ trong trường hợp này ta có [tex]0\leq x,y,z\leq 6[/tex] nên biên là 0 và 6
     
    ankhonguthaohien8c thích bài này.
  13. The†FireᴥSwordᵛᶥᶯᶣ†††♥♥♥♪

    The†FireᴥSwordᵛᶥᶯᶣ†††♥♥♥♪ Học sinh gương mẫu Thành viên

    Bài viết:
    1,319
    Điểm thành tích:
    331
    Nơi ở:
    Hải Phòng
    Trường học/Cơ quan:
    ††♥School ꜛ☼of☼♥ swordsmanship₸•††

    Không mất tính tổng quát giả sử [tex]x\leq y\leq z[/tex] Do x;y;z ko âm nên [tex]x^2\leq y^2\leq z^2[/tex]
    Ta có: [tex]\sum x=6\geq 3x\rightarrow x\leq 2[/tex]
    [tex]M=\sum \sqrt{x^2+16}\leq 3\sqrt{x^2+16}\leq 3\sqrt{2^2+16}=12\sqrt{5}[/tex]
    [tex]"="\Leftrightarrow x=y=z=2[/tex]

    EDIT: mình làm nhầm @@n cái này chỉ tìm dc min thôi
     
    Quân (Chắc Chắn Thế) thích bài này.
  14. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Ngược dấu rồi bạn, bạn đặt [tex]x\leq y\leq z[/tex] thì không thể có [tex]M=\sum \sqrt{x^2+16}\leq 3\sqrt{x^2+16}[/tex] nhé!
     
  15. Củ Ấu Gai

    Củ Ấu Gai Học sinh mới Thành viên

    Bài viết:
    17
    Điểm thành tích:
    16
    Nơi ở:
    Hải Dương
    Trường học/Cơ quan:
    Chuyên Nguyễn Trãi

    Cảm ơn bạn nhiều! Nhưng bạn ơi, biến đổi tương đương xong kết quả không được như ý muốn bạn ạ, xem lại giúp mình nhé!!!
     
    Last edited: 16 Tháng bảy 2019
  16. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Bạn biến đổi như thế nào?
     
  17. Củ Ấu Gai

    Củ Ấu Gai Học sinh mới Thành viên

    Bài viết:
    17
    Điểm thành tích:
    16
    Nơi ở:
    Hải Dương
    Trường học/Cơ quan:
    Chuyên Nguyễn Trãi

    Bất đẳng thức tương đương với:
    [tex]\sqrt{x^2+16}\leq \frac{\sqrt{13}-2}{3}.x+4[/tex]
    [tex]=> x^2+16 \leq \frac{17-4 \sqrt{13}}{9}.x^2+\frac{-16+8\sqrt{13}}{3}.x+16[/tex]
    [tex]<=> \frac{8-4\sqrt{13}}{9}.x^2+\frac{-16+8\sqrt{13}}{3}.x \geq 0[/tex]
    [tex]<=> \frac{8-4\sqrt{13}}{9}.x^2 - \frac{6.(8-4\sqrt{13})}{9}.x \geq 0[/tex]
    [tex]<=> \frac{8-4\sqrt{13}}{9}.x.(x-6) \geq 0[/tex]
    Ý bạn là đến đây bất đẳng thức luôn đúng, đúng không? (ok rồi, cảm ơn bạn nhiều)
     
    Last edited: 17 Tháng bảy 2019
  18. nhatminh1472005

    nhatminh1472005 Banned Banned Thành viên

    Bài viết:
    643
    Điểm thành tích:
    101
    Nơi ở:
    Hà Nội
    Trường học/Cơ quan:
    Trường THPT chuyên Hà Nội - Amsterdam

    Tức là bạn biến đổi được rồi chứ gì?
     
    Củ Ấu Gai thích bài này.
Chú ý: Trả lời bài viết tuân thủ NỘI QUY. Xin cảm ơn!

Draft saved Draft deleted

CHIA SẺ TRANG NÀY

-->