Đặt $S_{MBC} =S_1, \ S_{AMC} =S_2,\ S_{AMB} =S_3$
C1: $\dfrac{AM}{A_1M} = \dfrac{S_3}{S_{A_1BM}} = \dfrac{S_2}{S_{CA_1M}} = \dfrac{S_2+S_3}{S_1}$
Tương tự $\dfrac{BM}{B_1M} = \dfrac{S_1+S_3}{S_2}$, $\dfrac{CM}{C_1M} = \dfrac{S_1+S_2}{S_3} \\
\Rightarrow \dfrac{AM}{A_1M} + \dfrac{BM}{B_1M} + \dfrac{CM}{C_1M} = \dfrac{S_2+S_3}{S_1} + \dfrac{S_1+S_3}{S_2} + \dfrac{S_1+S_2}{S_3} = \dfrac{S_2}{S_1} + \dfrac{S_1}{S_2} + \dfrac{S_3}{S_1}+ \dfrac{S_1}{S_3} + \dfrac{S_2}{S_3}+ \dfrac{S_3}{S_2} \geq 6$
Dấu bằng xảy ra khi M là trong tâm tam giác ABC
C2:
$\dfrac{S_2}{S_1}+ \dfrac{S_1}{S_2} \geq 2$
$\dfrac{S_3}{S_2}+ \dfrac{S_2}{S_3} \geq 2$
$\dfrac{S_1}{S_3}+ \dfrac{S_3}{S_1} \geq 2$
Dấu bằng xảy ra khi cả $S_1 = S_2 = S_3$
suy ra M là trọng tâm ABC
--
Nguồn: Thiều Trần Cường (Hà Nội) - Fb:
https://www.facebook.com/wikipedialichsu