Toán 10 $\color{Blue}{\fbox{Topic Hot}\bigstar\text{Thảo Luận Về Bất Đẳng Thức}\bigstar}$

H

hien_vuthithanh

95/

AD cauchy
$a^2.(1-a^2)^2$=$\dfrac{1}{2}$.$2a^2.(1-a^2).(1-a^2)$ \leq $\dfrac{1}{2}$.$(\dfrac{2a^2+1-a^2+1-a^2}{3})^3$=$\dfrac{4}{27}$
\Leftrightarrow$ a.(1-a^2)$ \leq $\dfrac{2}{3\sqrt{3}}$ \Leftrightarrow $\dfrac{1}{ a.(1-a^2)}$ \geq $\dfrac{3\sqrt{3}}{2}$\Leftrightarrow $\dfrac{a^2}{ a.(1-a^2)}$ \geq $\dfrac{3\sqrt{3}a^2}{2}$ \Leftrightarrow $\dfrac{a^2}{b^2+c^2}$\geq $\dfrac{3\sqrt{3}a^2}{2}$

TT\Rightarrow dpcm

ủng hộ topic của bạn nè!
 
H

hien_vuthithanh

92/

$\dfrac{a^9+b^9}{x^6+x^3y^3+y^6}$=$x^3+y^3-\dfrac{2x^3y^3(x^3+y^3)}{x^6+x^3y^3+y^6}$ \geq $x^3+y^3-\dfrac{2x^3y^3(x^3+y^3)}{3\sqrt[3]{x^9y^9}}$=$\dfrac{1}{3}(x^3+y^3)$
\Rightarrow $\sum \dfrac{a^9+b^9}{x^6+x^3y^3+y^6}$ \geq $\dfrac{2}{3}.\sum x^3 $\geq $\dfrac{2}{3}.3\sqrt[3]{xyz}$=2
\Rightarrow P min=2 tại x=y=z=1
 
F

forum_

93) Cho $a;b;c>0$ thỏa $abc=1$. Cmr: $\sum \dfrac{1}{a+b+1}\le 1$

Đặt: $a = x^3$ ; $b=y^3$ ; $c=z^3$ . Giả thiết suy ra $xyz = 1$ và yêu cầu chứng minh:

$\sum \dfrac{1}{x^3+y^3+1}\le 1$

Quen quá rồi, hình như có làm ở pic này luôn rồi :D

 
F

forum_

94) Cho $a;b;c\ge 0$ thỏa: $ab+bc+ca=3$. Cmr: $\sum \dfrac{1}{1+a^2(b+c)}\le \dfrac{1}{abc}$

Giải:

Từ giả thiết mà Cauchy thì đc abc \leq 1

Suy ra: $1+a^2(b+c)$ \geq $a(ab+bc+ca)=3a$

Tương tự .... ta có:

$\sum \dfrac{1}{1+a^2(b+c)}$ \leq $\sum \dfrac{1}{3a}$ = $\dfrac{1}{3}.(\dfrac{ab+bc+ca}{abc}) = \dfrac{1}{abc}$

Đẳng thức chứng minh xong
 
Last edited by a moderator:
V

viethoang1999

91) Cho $\left\{\begin{matrix}a\in [1;2];b\in [4;5];c\in [7;10] & & \\ a+b+c=16 & & \end{matrix}\right.$. Tìm Max $P=abc$
Làm bài trích đề cho tiện theo dõi nhé!
91)
Có: $a<b<c$
Dự đoán dấu $"="$ xảy ra khi: $\alpha a=\beta b=c$ với $\alpha >\beta >1$
Xét: $\alpha. \beta .P=\alpha a.\beta b.c\le \left ( \dfrac{\alpha a+\beta b+c}{3} \right ) ^3=\left [ \dfrac{(\alpha -1)a+(\beta -1)b+16}{3} \right ] ^3\le \left [ \dfrac{(\alpha -1).2+(\beta -1).5+16}{3} \right ]^3$
$"="$ \Leftrightarrow $\left\{\begin{matrix}a=2 & & \\ b=5 & & \\c=9 \\\alpha a=\beta b=c \end{matrix}\right.$
\Leftrightarrow $\left\{\begin{matrix}\alpha =\dfrac{9}{2} & & \\ \beta =\dfrac{9}{5} & & \end{matrix}\right.$
Xét: $\dfrac{9}{2}a.\dfrac{9}{5}b.c$
Làm tương tự như bên trên ta có Max.

 
V

viethoang1999

96) Cho $x;y;z>0$. Cmr: $\sum\dfrac{2\sqrt{x}}{x^3+y^2}\le \sum \dfrac{1}{x^2}$

97) Cho $a;b;c>0$. Cmr: $\sum \dfrac{1}{a^2+bc}\le \dfrac{a+b+c}{2abc}$

98) Cho $\left\{\begin{matrix}x;y;z>0 & & \\ x+y+z=1 & & \end{matrix}\right.$. Cmr: $\sum \sqrt{x^2+xy+y^2}\ge \sqrt{3}$

99) Cho $\left\{\begin{matrix}x;y;z>0 & & \\ x+y+z=1 & & \end{matrix}\right.$. Cmr: $\sum \sqrt{2x^2+xy+y^2}\ge \sqrt{5}$

100) Cho $a;b>0$. Tìm Max $Q=a^3+b^3$ biết $a+b=a^2-ab+b^2$

101) Cho $a;b;c>0$ thỏa $a^2+b^2+c^2=1$. Cmr: $\sum \dfrac{1}{a^2+b^2}\le \dfrac{\sum a^3}{2abc}+3$
 
Last edited by a moderator:
E

eye_smile

98) Cho $\left\{\begin{matrix}x;y;z>0 & & \\ x+y+z=1 & & \end{matrix}\right.$. Cmr: $\sum \sqrt{x^2+xy+y^2}\ge \sqrt{3}$

$\sum \sqrt{x^2+xy+y^2} =\sum \sqrt{(x+\dfrac{1}{2}y)^2+(\dfrac{\sqrt{3}}{2}y)^2} \ge \sqrt{(x+\dfrac{1}{2}y+y+\dfrac{1}{2}z+z+\dfrac{1}{2}x)^2+\dfrac{3}{4}(x+y+z)^2} =\sqrt{3}$

99) Cho $\left\{\begin{matrix}x;y;z>0 & & \\ x+y+z=1 & & \end{matrix}\right.$. Cmr: $\sum \sqrt{2x^2+xy+y^2}\ge \sqrt{5}$

$\sum \sqrt{2x^2+xy+y^2} =\sum \sqrt{2(x+\dfrac{1}{4}y)^2+\dfrac{7}{8}y^2} \ge \sqrt{2(x+y+z+\dfrac{1}{4}x+\dfrac{1}{4}y+\dfrac{1}{4}z)^2+\dfrac{7}{8}(x+y+z)^2}=2$

Liệu đề câu này có nhầm không nhỉ?
 
Last edited by a moderator:
T

tranvanhung7997

98 (99 tương tự) $\sum \sqrt{x^2+xy+y^2} = \sum \sqrt{(x+\dfrac{y}{2})^2 + (\dfrac{\sqrt{3}y}{2})^2} \ge \sqrt{(\sum (x+\dfrac{y}{2}))^2 + (\sum \dfrac{\sqrt{3}y}{2})^2} = \sqrt{3}$ (Mincôpski)
=> đpcm
 
Last edited by a moderator:
V

viethoang1999


99) Cho $\left\{\begin{matrix}x;y;z>0 & & \\ x+y+z=1 & & \end{matrix}\right.$. Cmr: $\sum \sqrt{2x^2+xy+y^2}\ge \sqrt{5}$

$\sum \sqrt{2x^2+xy+y^2}=\sum \sqrt{x^2+\dfrac{3}{4}(x+y)^2+\dfrac{1}{4}(x-y)^2}$
$\ge \sum \sqrt{x^2+\dfrac{3(x+y)^2}{4}}=\dfrac{1}{2}\sum \sqrt{4x^2+3(x+y)^2}$
$=\dfrac{1}{2}\sum \sqrt{(2x)^2+(x+y)^2+(x+y)^2+(x+y)^2}\ge \dfrac{1}{2}\sum \dfrac{2x+x+y+x+y+x+y}{4}$
$=\dfrac{1}{2}.\sum \dfrac{5x+3y}{4}=\sum x=1$
 
V

viethoang1999

102) Cho $a;b;c>0$ thỏa $abc=2$. Cmr: $\sum a^3\ge \sum a\sqrt{b+c}$

103) Cho $a;b>0$ thỏa $a^2+b^2=1$. Tìm Min $A=\dfrac{1}{a}+\dfrac{1}{b}-\left ( \sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right )^2$

104) Cho 2 dãy ${a_n};{b_n}>0$ thoả: $a_{n+1}=a_n+\dfrac{1}{a_n}$ ; $b_{n+1}=b_n+\dfrac{1}{b_n}$.
Cmr: $C_{25}=a_{25}+b_{25}>10\sqrt{2}$

105) Cho $a;b>0$. Cmr:
$\sqrt{ab}+\dfrac{(a-b)^2(3a+b)(a+3b)}{8(a+b)(a^2+6ab+b^2)}\le \dfrac{a+b}{2}$

106) Cho $a;b;c>0$ thỏa: $a^2+b^2+c^2=4\sqrt{abc}$
Cmr: $a+b+c>2\sqrt{abc}$
 
Top Bottom