Kết quả tìm kiếm

  1. 7 1 2 5

    Toán [Chuyên đề HSGQG] Một số bài tập phương trình hàm

    Nếu bản trên có vấn đề thì các bạn tải xuống tại đây.
  2. 7 1 2 5

    Toán Đề thi chọn học sinh giỏi quốc gia Phú Thọ năm học 2021-2022

    Lời giải từ ĐTQG Toán Hà Tĩnh 2021 :)) !!! Có ai tò mò đến được đây không nhỉ :> Nếu có, xin chúc mừng bạn đã nhận được tin nhắn bí mật của mình nè ^^ Chúc bạn may mắn nhé <3
  3. 7 1 2 5

    Toán 10 Bài tập mệnh đề, mệnh đề chứa biến.

    Nếu đề chỉ yêu cầu tìm bộ số thì đáp án chỉ là (27,84,110,133,144). Well, vì hình như cũng chưa ai đưa ra được bộ số thứ 2 hay là chứng minh bộ đó là bộ duy nhất nên không chứng minh được tính duy nhất của bộ nghiệm nhé(ở đây ta xét bộ nghiệm mà cả 5 số không có ước chung) Nếu bạn có thắc...
  4. 7 1 2 5

    Toán 9 Định lý Bézout

    Định lí Bezout phát biểu như sau: Cho đa thức P(x). Khi đó 2 mệnh đề sau là tương đương: i) P(x) \vdots x-a ii) P(a)=0 Còn lược đồ Horner là lược đồ để phân tích 1 đa thức bậc cao thành tích của 1 đa thức bậc nhất và 1 đa thức khác khi biết được 1 nghiệm của nó. VD: Cho đa thức...
  5. 7 1 2 5

    Toán Hướng dẫn gõ trực tiếp một số kí hiệu LaTex dành cho thành viên HMF

    Xin chào các bạn. Hẳn các bạn đã từng thấy nhiều thành viên gõ công thức Toán học hay các môn học khác bằng hệ thống LaTex phải không nào? LaTex là một chương trình soạn thảo văn bản cho phép chúng ta tạo ra văn bản mà có định dạng cách điệu, và được sử dụng chủ yếu trong việc soạn thảo các...
  6. 7 1 2 5

    Toán 10 Nâng cao tập hợp

    Xét 1 tập con K thỏa mãn bài toán. Theo nguyên lí cực hạn, tồn tại a \in K là phần tử nhỏ nhất của K, b \in K là phần tử lớn nhất của K. Khi đó \frac{a^2}{b-a} \in K \Rightarrow \frac{a^2}{b-a}\geq a \Rightarrow b \leq 2a Xét d là phần tử lớn nhất của K/\left \{ b \right \}. Vì \frac{d^2}{b-d}...
  7. 7 1 2 5

    Toán 11 [HSGQG] Đề thi và đáp án của Olympic Gặp gỡ Toán học 2021

    Đây là tài liệu sẽ hữu ích cho một số người có dự định về VMO nhé.
  8. 7 1 2 5

    Toán 9 Tổ hợp

    Giả sử S=\left \{ p_1,p_2,...,p_{2017} \right \} Với x_i \in M, xét x_i=p_1^{\alpha_{i_1}}.p_2^{\alpha_{i_2}}...p_{2017}^{\alpha_{i_{2017}}} Để dễ xét hơn thì ta sẽ thay \alpha _{i_k} bởi 1 nếu lẻ, thay bởi 0 nếu chẵn. Ta thấy có 2^{2018}-1 tích một số số có thể lấy từ tập M. Khi đó xét các...
  9. 7 1 2 5

    Toán 11 [HSGQG] Tổng quát 1 bài toán lớp 9

    Thêm 1 bài toán mở rộng nữa "Trong k+m-1 số nguyên bất kỳ (1 \leq k \leq m, m \vdots k), luôn tồn tại m số có tổng chia hết cho k." Bài toán được nhắc tới ở topic trước là trường hợp m=kcủa bài toán này. Nếu như không biết trước bài toán trước, thì hẳn sẽ rất khó để chúng ta chứng minh bài toán...
  10. 7 1 2 5

    Toán 11 [HSGQG] Tổng quát 1 bài toán lớp 9

    Năm 2011, trong đề thi trường THPT Chuyên Nguyễn Huệ, đã có một câu Tổ hợp như sau: Bài 5: Chứng minh rằng từ 53 số tự nhiên bất kì luôn chọn được 27 số mà tổng của chúng chia hết cho 27. Nhìn thoáng qua ta có thể thấy bài này không quá dễ. Đây là cách làm đề xuất: Ta sử dụng bổ đề: Trong 5 số...
  11. 7 1 2 5

    Toán 9 Bất đẳng thức

    (Bài viết trên sai ở phần xét abc<0, a+b+c>0) Xét các trường hợp: + Cả 3 số a,b,c đều dương. Đặt p=a+b+c,q=ab+bc+ca,r=abc. Ta cần chứng minh 6p(p^2-2q)\leq 27r+10(p^2-2q)\sqrt{p^2-2q} Theo BĐT Schur thì r\geq \frac{p(4q-p^2)}{9}\Rightarrow 27r\geq 3p(4q-p^2) Cần chứng minh 6p(p^2-2q)\leq...
  12. 7 1 2 5

    Toán 9 Bất đẳng thức

    Xét các trường hợp: + abc \geq 0 Nếu trong 3 số a,b,c có 2 số âm, 1 số không âm (giả sử là c) thì a^2+b^2+c^2 \geq a^2+b^2\geq \frac{1}{2}(-a-b)^2 \geq \frac{1}{2}(-a-b-c)^2\Rightarrow \sqrt{a^2+b^2+c^2} \geq \sqrt{\frac{1}{2}}|a+b+c|\geq \sqrt{\frac{1}{2}}(a+b+c) Khi đó 6(a+b+c)(a^2+b^2+c^2)...
  13. 7 1 2 5

    Toán 9 Số học

    1. Giả sử a=max\left \{ a;b;c \right \} Khi đó 4a^2< 4a^2+5b \leq 4a^2+5b< (2a+2)^2\Rightarrow 4a^2+5b=(2a+1)^2\Rightarrow 5b=4a+1 Từ đó nếu ta đặt b=4k+1\Rightarrow a=5k+1 Từ đó ta chỉ cần tìm c,k sao cho (8k+2)^2+5c,4c^2+25a+5 là số chính phương. Xét 2 trường hợp: + k \geq c. Ta sẽ kẹp số...
  14. 7 1 2 5

    Toán 7 tìm x, biết:|x-1|+|x-2|+|x-3|+...+|x-100|=2500

    |x-1|+|x-2|+|x-3|+....+|x-100|=|x-1|+|x-2|+|x-3|+....+|x-50|+|51-x|+|52-x|+...+|100-x|\geq |x-1+x-2+...+x-50+51-x+52-x+...+100-x|=(51+52+...+100)-(1+2+...+50)=2500 Dấu "=" xảy ra khi x-1,x-2,...,x-50cùng dấu và 51-x,52-x,...,100-x cùng dấu và khác dấu với x-1,x-2,...,x-50 Từ đó ta suy ra 50 \leq...
  15. 7 1 2 5

    Đề thi tuyển sinh vào 10 môn Toán ( Chuyên) THPT Chuyên Hà Tĩnh 2020-2021

    1. Cộng vế theo vế hệ đã cho ta có: (a+b+c)(x+y-1)=0\Rightarrow a+b+c=0 hoặc x+y=1 Với a+b+c=0 ta dễ dàng suy ra a^3+b^3+c^3=3abc \Rightarrow đpcm Với x+y=1 \Rightarrow y=1-x thay vào ta được hệ : \left\{\begin{matrix} (a-b)x=c-b\\ (b-c)x=a-c\\ (c-a)x=b-a \end{matrix}\right.\Rightarrow...
  16. 7 1 2 5

    Toán 9 Ôn thi tuyển sinh môn Toán lớp 10 năm 2020

    1. Biến đổi, rút gọn biểu thức. Đây là phần bài tập có thể nói là "cho điểm" nhưng nếu lớ ngớ thì phần "cho điểm" sẽ thành "mất điểm" nhé. Cho nên bạn phải nắm vững kiến thức cơ bản của phần này. + Các hằng đẳng thức : a^2-b^2=(a-b)(a+b),a^3+b^3=(a+b)(a^2-ab+b^2),a^3-b^3=(a-b)(a^2+ab+b^2) Nhưng...
Top Bottom