HOCMAI Forum đã quay trở lại, MỚI MẺ - TRẺ TRUNG - NĂNG ĐỘNG
Hãy GIA NHẬP ngay

[Toán 9] Tổng hợp các kinh nghiệm cũng như giải các bài tập violympic

Thảo luận trong 'Thảo luận chung' bắt đầu bởi minhtuyb, 13 Tháng một 2012.

Lượt xem: 35,393

  1. minhtuyb

    minhtuyb Guest

    Hướng dẫn Cách gõ công thức Toán học, Vật lý, Hóa học forum mới


    Xin chào các mem lớp 9. Xin tự giới thiệu mình tên là Tú :D, vừa lên chức mod được mấy ngày, thấy tình hình box Toán nói chung không đc sôi động cho lắm nên xin mở ra topic này để trao đổi kinh nghiệm cũng như giải các bài tập violympic yêu cầu của các bạn, kể cả cơ bản đễn nâng cao. Đây là topic đầu tay của tôi mong tất cả các bạn ủng hộ để nó sẽ không bị rơi vào quên lãng như đa số các topic ở đây ;))
    Hiện nay, mình dự định topic này gồm 3 phần chính:
    I. Các kinh nghiệm cơ bản khi đi thi
    II. Các công thức và dạng bài thường gặp
    III. Giải đáp các bài tập yêu cầu của các bạn
    Mong các bạn có thể bổ sung thêm ý tưởng cho topic này :x:x:x

     
    Last edited by a moderator: 1 Tháng hai 2012
  2. minhtuyb

    minhtuyb Guest


    I. Các kinh nghiệm khi đi thi


    1. Nguyên tắc chung (Chắc ai cũng đã biết, mình nhắc lại thôi :D)


    -Phải đọc kĩ đề bài, xét xem đó là loại toán nào

    -Suy nghĩ cách làm cho nhanh mà vẫn chính xác

    -Cuối cùng là nhìn kĩ xem câu trả lời này là của câu hỏi nào
    2. Từng dạng bài cụ thể


    -Đầu tiên, mình khuyên bạn nên mua một chiếc máy tính cầm tay xịn, tốt nhất là CASIO fx-570 ES. Tuy violympic không phải là cuộc thi giải toán bằng máy tính cầm tay, nhưng nếu hiểu kĩ, sử dụng thành thạo một chiếc CASIO thì bạn sẽ rút ngắn được rất nhiều thời gian cho những dạng bài tập quen thuộc
    a. Dạng bài tập rút gọn biểu thức chứa ẩn, biểu thức đại số
    - Với dạng bài tập tính giá trị của biểu thức không phụ thuộc vào giá trị của (một hay nhiều) biến, VD:
    [tex]A=(x+y)^4-4xy(x+y)^2-(x^2+1)^2-(y^2+1)^2+x^2(y^2+2)+y^2(x^2+2)[/tex]

    Nhận xét:Nếu bạn nào chịu khó thì sẽ khai triển biểu thức trên ra, rút gọn lại và ra kết quả -2. Không sai, nhưng cách trên quá dài, đảm bảo là phải trên 30 giây X_X. Bạn chú ý cụm từ không phụ thuộc vào giá trị của biến, tức là với giá trị của x,y bất kì thì cũng thu được kết quả [tex]A=-2[/tex], vậy tại sao bạn không lấy [tex]x,y\in R[/tex] bất kì rồi thay vào tính A ^^. Mình thường lấy [tex]x=y=0[/tex] để khử hết các ẩn đi, khi đó chỉ còn:
    [tex]A=(0+0)^4-4.0.0(0+0)^2-(0^2+1)^2-(0^2+1)^2+0^2.(0^2+2)+0^2.(0^2+2)=-1^2-1^2=2[/tex].

    Thật đơn giản và hiệu quả!!! Tuy cách trên hơi phản khoa học nhưng nó hoàn toàn đúng, với cả với cách này thì bạn chỉ dung tối đa là 10 giây cho 1 bài :x:x:x
    - Với dạng bài tập rút gọn biểu thức số, VD như sau:
    Giá trị của biểu thức [tex] A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[9]{9-4\sqrt{5}}[/tex]
    Nhiều bạn có cách làm cần cù như sau (mình cũng đã từng thế :)) ):
    [tex] A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[9]{9-4\sqrt{5}} [/tex]
    [tex] =\sqrt[3]{\frac{72+32\sqrt{5}}{8}}+\sqrt[3]{\frac{72-32\sqrt{5}}{8}} [/tex]
    [tex] =\frac{1}{2}(\sqrt[3]{3^3+3.3^2\sqrt{5}+3.3.5+5\sqrt{5}}+\sqrt[3]{3^3-3.3^2\sqrt{5}+3.3.5-5\sqrt{5}}) [/tex]
    [tex] =\frac{1}{2}(\sqrt[3]{(3+\sqrt{5})^3}+\sqrt[3]{(3-\sqrt{5})^3}) [/tex]
    [tex] =\frac{1}{2}(3+\sqrt{5}+3-\sqrt{5})=3 [/tex]
    +)Hoặc là một biểu thức phức tạp hơn:
    [tex] B=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}[/tex]
    Bài này đã từng làm tôi mất hơn 5 phút/20 phút khi không sử dụng máy tính(để quên máy ở lớp mà lại phải thi vio :)) ). Cách làm như sau:
    Đặt [tex] a=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}};b=\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\Rightarrow B=a-b[/tex]
    -Xét hiệu:
    [tex] a^3-b^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}=6 [/tex]
    -Xét tích:
    [tex] ab=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}=\sqrt[3]{9+\frac{125}{27}-3^2}=\sqrt[3]{\frac{125}{27}}=\frac{5}{3} [/tex]
    -Áp dụng hằng đẳng thức: [tex] (a-b)^3=a^3-b^3-3ab(a-b) [/tex], có
    [tex] B^3=6-3.\frac{5}{3}B\Leftrightarrow B^3+5B-6=0 \Leftrightarrow (B-1)(B^2+B+6)=0\Leftrightarrow B=1 [/tex]

    Nhận xét:Cũng chả ai bao cách này sai cả. Tuy nhiên, nếu muốn làm theo cách thong thường như thế này thì chắc tốn không ít hơn 2 phút đâu :-S :-S :-S!Để làm bài này một cách nhan gọn, như đã nói ở trên, bạn chỉ cần dùng chiếc CASIO là xong =))=)). Kiểu dùng máy này nếu bạn nào nhanh thì chỉ tốn 20 giây thui mà kết quả vẫn rất chuẩn xác =)).
    P/s: Còn tiếp tục hoàn thành, tạm thời các bạn đừng post bài toán ở đây nha, để mình hoàn thành chương I và II đã
     
    Last edited by a moderator: 1 Tháng hai 2012
  3. minhtuyb

    minhtuyb Guest


    Trở lại tiếp về topic, mình sẽ tiếp tục phần kinh nghiệm, các bạn ủng hộ nhiệt tình nha :x:x:x. Có gì thì cm vào tin nhắn cá nhân của mình, đừng viết ở topic này nha ;):
    I.
    1.
    2.
    a.
    b. Vòng thi “Sắp xếp các ô theo thứ tự giá trị tăng dần”, “Chọn các ô có giá trị bằng nhau hay đồng dạng với nhau”:



    -Ở vòng này, tốt nhất các bạn nên viết các giá trị bạn tính được ra nháp. Bạn nhớ tính cẩn thận nha! Chỉ cần sai 1 phép tính  Chọn sai 3 lần  Điểm vòng thi đó là 0/80 Ngồi khóc :(:)(:)((

    -Thường thì bài này thường là có 12 ô (hiếm lắm là 12 ô thui :x). Thời gian tính toán là 19 phút, 1 phút là chọn các ô theo giá trị tăng dần. Tức là bạn có xấp xỉ 1 phút 35 giây để tính giá trị của 1 ô!!! Theo mình nghĩ thì dư thừa!!! Cho nên bạn cứ bình tĩnh mà làm, thời gian thì chả lo gì, vì theo mình ở vio thì điểm số là quan trọng hơn, thời gian chỉ đóng một phần rất nhỏ thôi, nhất là kì thi các cấp, ăn nhau ở điểm số 300/300 chứ ít ai ăn nhau ở thời gian lắm :D.


    -Đối với bài “Chọn các ô có giá trị bằng nhau hay đồng dạng với nhau”, ngoài việc các bạn tính đúng các giá trị của từng ô thì cần phải tinh mắt một chút ;):khi bạn đã chọn hết các ô rồi, chỉ cọn lại 4 ô, thì bạn trước tiên hãy xem xét xem 2 ô nào có giá trị cụ thể, 2 ô nào có giá trị là một biểu thức thì sẽ rút ngắn được thời gian suy nghĩ và chính xác hơn:
    VD: khi chỉ còn 4 ô là:
    Ô 1: GTLN của biểu thức [tex]A=-x^2[/tex][tex]+4x+23[/tex]
    Ô 2: [tex]\frac{1}{x}-\frac{1}{x+1}[/tex]
    Ô 3: [tex]\frac{(x+1)^2}{x(x^3+3x^2+3x+1)}[/tex]
    Ô 4: Giá trị của biểu thức [tex]A=-54x^2y+27x(x^2+y^2)+xy^2+8y^2(x-y)[/tex] Với [tex]3x-2y=3[/tex]


    Nhận xét: dễ thấy ô 1 và ô 4 có giá trị cụ thể, còn ô 2 và ô 3 có giá trị là các biểu thức nên ta có thể chọn ô 1 với ô 4, ô 2 với ô 3

    c. Vòng thi “Thỏ tìm cà rốt”: Mình chỉ khuyên các bạn hãy chọn con đường ngắn nhất, thuận lợi nhất để đi
    Phần kinh nghiệm của mình chỉ viết đến đây thui, bạn nào có kinh nghiệm khác thì send cho mình để mình bổ sung nha :D. Nếu không ai send thì mình sẽ tiếp tục chương II
    Thanks em :D
     
    Last edited by a moderator: 14 Tháng một 2012
  4. minhtuyb

    minhtuyb Guest


    II. Các công thức và dạng bài thường gặp



    Ở chương này, mình sẽ đưa những công thức mình tìm được cũng như các công thức sưu tầm được để giải quyết các dạng bài tập khác nhau ;). Các bạn cũng có thể post các công thức mà mình tích lũy được nhưng nhớ đánh số thứ tự đúng nha, không là mình sáp nhập vô bài mình, mất nút thanks ráng chịu :)):))

    Công thức 1: Công thức nhẩm nhanh cực trị của tam thức bậc hai:


    Bắt đầu từ lớp 8, chúng ta sẽ gặp nhiều hơn các bài về tìm GTLN,GTNN của tam thức bậc hai [tex]ax^2+bx+c(a\neq 0)[/tex]. Tuy đây cũng là một dạng bài dễ nhưng cũng sẽ tốn một chút thời gian của bạn :D. Mình sẽ đưa ra công thức kinh nghiệm của mình về việc nhẩm nhanh GTLN, GTNN của tam thức bậc hai :xo:):x


    Trước hết chúng ta bắt đầu với việc phân tích:
    [tex] ax^2+bx+c [/tex]
    [tex] =a(x^2+\frac{b}{a}x)+c [/tex]
    [tex] =a[x^2+2.x.\frac{b}{2a}+(\frac{b}{2a})^2]-a.(\frac{b}{2a})^2+c [/tex]
    [tex] =a(x+\frac{b}{2a})^2+(c-\frac{b^2}{4a}) [/tex]


    -Từ phép phân tích trên, ta thấy:


    +)Với [tex]a>0[/tex] thì GTNN của biểu thức [tex] ax^2+bx+c [/tex] là [tex] c-\frac{b^2}{4a}[/tex] tại [tex] \mathit{x=-\frac{b}{2a}} [/tex]


    +)Với [tex]a<0[/tex] thì GTLN của biểu thức [tex] ax^2+bx+c [/tex] là [tex] c-\frac{b^2}{4a}[/tex] tại [tex] \mathit{x=-\frac{b}{2a}} [/tex]


    -Vậy ta có thể nhẩm nhanh GTLN hoặc GTNN của tam thức bậc hai bằng cách thay [tex]x=-\frac{b}{2a}[/tex] sẽ được [tex] c-\frac{b^2}{4a}[/tex] :D. Đây là một công thức rất phổ biến trong violympic hiện nay :D
    P/s: Thành thật sr các bạn vì việc chậm trễ của pic, gần 1 ngày mới post 1 bài :(. Lí dó cũng bởi vì sắp tết nên các thầy cô cố gắng dìm hàng mình xuống, cho mình ăn hành nhiều hơn nên thời gian duy trì pic chưa thật đều. Nhưng... hehe... sắp đến tết rùi, đc nghỉ 2 tuần liền :)). Sẽ cố gắng duy trì topic này :x.
    Ế mà sao không ai comment mình cái nhể, xin chút ý tưởng nào ;)
     
    Last edited by a moderator: 15 Tháng một 2012
  5. minhtuyb

    minhtuyb Guest


    Công thức 2: Công thức tính diện tích hình thang rất quen thuộc, hữu dụng từ lớp 6-->9 :D:
    [​IMG]
    Công thức 3: Đây là hệ thức lượng giác trong tam giác vuông ở lớp 9, nhưng có thể c/m bằng tam giác đồng dạng nên mem lớp 8 cũng nên biết dạng này :D:
    -Xét [TEX]\Delta ABC;\widehat{BAC}=90^o;AH\perp BC[/TEX], ta có các hệ thức sau:
    [​IMG]
    1.[TEX]AH^2=BH.HC[/TEX]
    2.[TEX]AB^2=BH.BC;AC^2=CH.BC[/TEX]
    3.[TEX]AB.AC=AH.BC(=2S_{ABC})[/TEX]
    4.[TEX]\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}[/TEX][TEX]\Leftrightarrow AH=\sqrt{\frac{AB^2.AC^2}{AB^2+AC^2}}[/TEX]
     
  6. minhtuyb

    minhtuyb Guest


    Theo yêu cầu của bạn, mình cũng sẽ đưa lên một số công thức về sin cos :D
    Công thức 4: Tính diện tích tam giác theo độ dài 2 cạnh và góc xen giữa 2 cạnh đó:
    [​IMG]
    -Xét [TEX]\Delta ABC;\widehat{B}=\alpha;AH\perp BC[/TEX]. Ta có công thức tính diện tích:
    [TEX]S_{ABC}=\frac{1}{2}AH.BC[/TEX]
    Mặt khác: [TEX]AH=AB.sin\hat{B}=AB.sin\alpha \Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.BC.sin\alpha [/TEX]
    Vậy: "Diện tích của một tam giác bằng một nửa tích giữa hai cạnh và sin của góc xen giữa hai cạnh đó"
    * Một số hệ quả: (Vẽ hình minh họa các bạn tự hiểu nha, ngại phát biểu lắm ;)))
    Công thức 4.1: Tính diện tích tứ giác lồi theo độ dài 2 đường chéo và góc nhọn tạo bởi 2 đường chéo đó:
    [​IMG]
    [TEX]S_{ABCD}=\frac{1}{2}AC.BD.sin\alpha[/TEX]
    Công thức 4.2: Công thức tính độ dài phân giác:
    [​IMG]
    [TEX]AD=\frac{AB.AC.sin\alpha }{(AB+AC).sin\frac{\alpha }{2}}[/TEX] (Gợi ý: c/m theo diện tích tam giác lớn bằng tổng diện tích 2 tam giác nhỏ)
     
  7. minhtuyb

    minhtuyb Guest


    III. Giải đáp các bài tập yêu cầu của các bạn
    Chả thấy ai cm j` cả, hix hix :(. Bây giờ các bạn có thể post bài theo yêu cầu vào đây, mình sẽ mời thêm một số mod nỗ lực giải các bài tập yêu cầu của các bạn. Bây giờ các bạn có thể yêu cầu thêm các công thức thường gặp mà các bạn không biết, mình sẽ cố gắng tìm kiếm :x:x:x
    :khi (34)::khi (34)::khi (34):
     

  8. Đóng góp thêm 1 kinh nghiệm khi đi thi, mình cũng chưa thử bao giờ( bạn mình bảo). :), TH dùng cho đi thi thôi.

    I) khi làm bài, nếu như bài vòng 1,2 của các bạn không được suôn sẻ (điểm số kém, sắp xếp thứ tự không đúng [TEX]\Rightarrow[/TEX] trừ hết điểm ...) thì các bạn có thể gọi điện hoặc nhờ người thân nào đó, đăng nhập vào nick bạn, như vậy thì bạn có lý do chính đáng để đc xét thi lại rồi, tránh tình trạng bài kém quá thoát ra là hệ thống sẽ tính điểm 0.

    Vấn đề tiếp theo, mình muốn hỏi là trong lúc thi violympic vòng 10, mình có gặp 1 phép tính khá lạ, nó như thế này :(

    [TEX]\sqrt {1+\frac{3}{2\sqrt2}}+\sqrt {1-\frac{3}{2\sqrt2}} {[/TEX]
    Đó là phần tử, mẫu số thì chỉ thay đổi dấu "-_" và dấu "+" ở giữa 2 căn đó thôi.

    Vấn đề là cái căn thứ 2 không thể tồn tại. Vậy mà hệ thống bắt nhập kết quả là [TEX]\sqrt A[/TEX]. Đấy, ai giải thích giùm. Thanks
     
  9. quynhnhung81

    quynhnhung81 Guest


    Cái này phải gửi mail cho BTC chứ
    Góp vui mọi người thêm mấy cái công thức nữa nè, mong là nó có ích


    [​IMG]
     
    Last edited by a moderator: 4 Tháng hai 2012

  10. có thể là bạn đã nhầm, vì tớ làm bài này thì đề là [TEX]\sqrt{1-\frac{2\sqrt{2}}{3}}[/TEX] cơ :D

    bạn nào cho tớ hỏi đáp án bài này vs

    [TEX]\sqrt[3]{(65+x)^2}+4\sqrt[3]{65-x)^2}=5\sqrt[3]{65^2-x^2}[/TEX]

    giải pt nhé, ko hỉu sao tớ giải ra nghiệm vô tỷ :((
     
  11. minhtuyb

    minhtuyb Guest


    Đặt [TEX]a=\sqrt[3]{65+x};b=\sqrt[3]{65-x}[/TEX]. Ta có hệ:
    [TEX]\left\{\begin{matrix}a^2+4b^2=5ab\\ a^3+b^3=130\end{matrix}\right.
    [/TEX]
    Giải ra có: [TEX]a=b=\sqrt[3]{65}\Rightarrow x=0[/TEX]
    Hết vô tỉ rùi nhỉ :x
     
  12. ariespisces

    ariespisces Guest


    đặt 65+x =a ; 65-x =b co' pt mới
    [TEX]\sqrt[3]{a^2}+4\sqrt[3]{b^2} =5\sqrt[3]{ab}[/TEX]
    Tớ chỉ bik cach' lập phương lên,rut' gon,rồi thay x vao`
    Ra dc 2 gia tri la` 63 va 0
    :D:D:D
    Bài này đi thi ma` gặp chỉ co' cach' bỏ wa,tại no' làm tốn thoi gian ma` o? khuc lap phuong ko cẩn thận lại sai.Haizzzz
     
    Last edited by a moderator: 5 Tháng hai 2012
  13. ma_vuong_97

    ma_vuong_97 Guest


    bài này khó quá mọi người giúp em với :-SS
    câu 1: Nếu α là góc nhọn và sin 2α = a thế thì sin α+cos α bằng:.........
    a)[TEX]\sqrt{a+1}[/TEX]
    b)[TEX](\sqrt{2}-1)a+1[/TEX]
    c)[TEX]\sqrt{a+1}-\sqrt{a^2-a}[/TEX]
    d)[TEX]\sqrt{a+1}+\sqrt{a^2-a}[/TEX]

    câu 2: Cho hình thang ABCD vuông tại A và D, hai đường chéo AC và BD vuông góc nhau. Biết AB = 18cm và CD = 32cm. Khi đó BD =........cm.

    câu 3: cho phương trình [TEX]x+y+z=2(2\sqrt{x+1}+3\sqrt{y-2}+4\sqrt{z+3})[/TEX]
    Tìm x,y,z.
     

  14. 1 vấn đề liên quan tớ violympic toán

    Có bạn nào dự thi violympic toán không cho mình hỏi tẹo?
    Hôm tr'c mình có vào chỉnh sửa thông tin 2 lân .....Mà đợi hoài không thấy tên mình hiên lại trong danh sách,,, Vậy liệu njck mình có bị xóa hẳn không vậy????
    :(:(:(:(:(:(:(:(:(
     

  15. Khi bạn thay đổi thông tin cá nhân thì tên của bạn sẽ biến mất trong thống kê của trường, mất 1 ngày để ban tổ chức xác nhận lại thông tin xem có vi phạm gì không, qua tối đa 2 ngày là bạn lại có thể thấy tên mình trong bảng.
    @: hôm trước thi xong vòng 12, kiểm tra thấy đứng hạng 18 Hà Nội,;):p
     
  16. firel0ve610

    firel0ve610 Guest


    Bài này bạn có thể tìm ở trang 60 TG Bùi Văn Tuyên nha ( Nâng cao và chuyên đề )
     
  17. firel0ve610

    firel0ve610 Guest


    Mình thấy bài ko phụ thuộc vào giá trị của biến thì hay nhưng bài dưới thì sách nào cũng nói đến hết :D
     
  18. minhtuyb

    minhtuyb Guest


    Ý mình ko phải vậy ;)).Mình đưa ra phần rút gọn chính quy chỉ để khuyên các bạn
    đừng dại mà làm như vậy, bấm máy cho xong ;))
    Nếu tiếp tục không nhận đc sự ủng hộ, xin khóa pic =((
     
  19. firel0ve610

    firel0ve610 Guest


    Ồh. Nếu mà làm thì làm cẩn thận nhưng mà đi thi violympic ấn máy là song ngày ý mà ;);)
     

  20. tớ làm biến đánh nên cho cậu đáp án nè : x=0:p:p:p:p:p:p:p:p:p:p:p:p:p:p:p:p
    chính xác 100%
     

CHIA SẺ TRANG NÀY