[tex]\frac{a}{b^{3}+ab}=\frac{1}{b}-\frac{b}{a+b^{2}}\geq \frac{1}{b}-\frac{b}{2\sqrt{ab}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}[/tex] lại có :
[tex]\frac{1}{2\sqrt{a}}=\frac{1}{2}(\sqrt{\frac{1}{a}}.\sqrt{1})\leq \frac{1}{4}(\frac{1}{a}+1)[/tex]
Suy ra
[tex]\frac{1}{b}-\frac{1}{2\sqrt{a}}\geq \frac{1}{b}-\frac{1}{4}(\frac{1}{a}+1)[/tex]
cm tương tự suy ra đpcm . dấu = xảy ra khi a=b=c=1