17a) Tự thay vào rồi tính thôi
b) $P = 2x^2 + 2xy - 2x + y^2 + 1 = (x^2-2x+1) + (x^2 + 2xy + y^2) = (x-1)^2 + (x+y)^2 \geqslant 0$
16)
$x^3 + 8x^2y - 2x^2 - 4xy^2 - 9y^3 - f(x) = -5x^3 + 8x^2y - 4xy^2 - 9y^3$
$\iff x^3 - 2x^2 - f(x) = -5x^3$
$\iff f(x) = x^3 - 2x^2 + 5x^3 = 6x^3 - 2x^2$
Dễ $f(x) = 0$
$\iff 6x^3 - 2x^2 = 0$
$\iff 2x^2(3x-1) = 0$
$\iff \left[ \begin{array}{l}
x = 0 \\
x = \dfrac13
\end{array} \right.$
15a) $|x+3| - 2x = |x-4|$
+ $x < -3$
pt $\iff -x-3 - 2x = 4-x$
$\iff x = -\dfra
2$ (nhận)
+ $-3 \leqslant x \leqslant 4$
pt $\iff x+3 - 2x = 4-x$
$\iff 0 = 1$ (vô lý)
+ $4 < x$
pt $\iff x+3 - 2x = x-4$
$\iff x = \dfra
2$ (loại)
Vậy $x = -\dfra
2$
b) $||x+5| - 4| = 3$
$\iff \left[ \begin{array}{l}
|x+5|-4 = 3 \\
|x+5|-4 = -3 \\
\end{array} \right.$
$\iff \left[ \begin{array}{l}
|x+5| = 7 \\
|x+5| = 1 \\
\end{array} \right.$
$\iff \left[ \begin{array}{l}
x+5 = 7 \\
x+5 = -7 \\
x+5 = 1 \\
x+5 = -1 \\
\end{array} \right.$
$\iff \left[ \begin{array}{l}
x = -2 \\
x = -12 \\
x = -4 \\
x = -6 \\
\end{array} \right.$
14a) $|10x+7| < 37$
$\iff \left\{ \begin{array}{l}
10x+7 < 37 \\
-10x-7 < 37
\end{array} \right.$
$\iff \left\{ \begin{array}{l}
x < 3 \\
x > -\dfrac{22}{5}
\end{array} \right.$
Vậy $-\dfrac{22}5 < x < 3$
b) $|3-8x| \leqslant 19$
$\iff \left\{ \begin{array}{l}
3-8x \leqslant 19 \\
8x-3 \leqslant 19
\end{array} \right.$
$\iff \left\{ \begin{array}{l}
x \geqslant -2 \\
x \leqslant \dfrac{11}4
\end{array} \right.$
Vậy $-2 \leqslant x \leqslant \dfrac{11}4$