Diễn đàn học tập của Hocmai.vn
Liên hệ quảng cáo: xem chi tiết tại đây

Diendan.hocmai.vn - Học thày chẳng tày học bạn! » Toán » Toán lớp 11 » Giới hạn » [Toán 11]Cách xét tính liên tục của hàm số




Trả lời
  #1  
Cũ 18-03-2010
minh7509 minh7509 đang ngoại tuyến
Thành viên
Thành viên của lớp
 
Tham gia : 26-06-2009
Bài viết: 24
Đã cảm ơn: 5
Đuợc cảm ơn 1 lần với 1 bài viết
[Toán 11]Cách xét tính liên tục của hàm số

Ai biết cách chung thì chỉ cho mình với
Phương pháp cách làm đó
Càngđầy đủ càng tốt

Thay đổi nội dung bởi: rua_it, 19-03-2010 lúc 18:49. Lý do: Không dấu:D
Trả Lời Với Trích Dẫn
  #2  
Cũ 18-03-2010
bupbexulanxang's Avatar
bupbexulanxang bupbexulanxang đang ngoại tuyến
Juliet
Lớp phó
 
Tham gia : 11-12-2008
Đến từ: đâu?
Bài viết: 898
Đã cảm ơn: 545
Được cảm ơn 593 lần
lim f(x) khi x-->x0 =f(x0) .
__________________
--------Chữ ký mà------he
..[
Trả Lời Với Trích Dẫn
  #3  
Cũ 21-03-2010
binhhiphop's Avatar
binhhiphop binhhiphop đang ngoại tuyến
MEM VIP
Thư kí
 
Tham gia : 17-02-2008
Đến từ: A2 - THPT Đơn Dương
Bài viết: 616
Đã cảm ơn: 524
Được cảm ơn 690 lần
sách giáo khoa có đầy đủ mà bạn
- Giá trị tại f(x_0) = lim (x->x_0) (x_0)
- Hàm số liên tục trên khoảng, nửa khoảng thì nó liên tục với mọi điểm thuộc khoảng, nửa khoảng đó.
__________________
bx, em mà đọc dc dòng này thì em phải biết em đã có lỗi với anh
Trả Lời Với Trích Dẫn
Trả lời

Chia sẻ/đánh dấu bài viết


Ðiều chỉnh Tìm trong bài viết
Tìm trong bài viết:

Tìm chi tiết
Xếp bài

Quyền hạn của bạn
Bạn không thể tạo chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể đăng tập đính kèm
Bạn không thể sửa bài của mình

BB codeMở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

 
Bài giảng mới
Chuyên đề Hình học 11 :  Bài 08. Khoảng cách từ 1 điểm đến 1 mặt phẳng
Chuyên đề Hình học 11 : Bài 08. Khoảng cách từ 1 điểm đến 1 mặt phẳng
Chuyên đề Hình học 11 :  Bài 06. Dựng thiết diện tạo bởi mặt phẳng vuông góc với đường thẳng cho trước
Chuyên đề Hình học 11 : Bài 06. Dựng thiết diện tạo bởi mặt phẳng vuông góc với đường thẳng cho trước
Chuyên đề Hình học 11 :  Bài 07. Hai mặt phẳng vuông góc
Chuyên đề Hình học 11 : Bài 07. Hai mặt phẳng vuông góc
Chuyên đề Hình học 11 :  Bài 05. Định lý 3 đường vuông góc, các khối hình KG đặc biệt
Chuyên đề Hình học 11 : Bài 05. Định lý 3 đường vuông góc, các khối hình KG đặc biệt
Chuyên đề Hình học 11 :  Bài 04. Đường thẳng vuông góc với mặt phẳng
Chuyên đề Hình học 11 : Bài 04. Đường thẳng vuông góc với mặt phẳng
Chuyên đề Hình học 11 :  Bài 03. Hai đường thẳng vuông góc trong không gian
Chuyên đề Hình học 11 : Bài 03. Hai đường thẳng vuông góc trong không gian
Chuyên đề Hình học 11 :  Bài 02. Sử dụng vectơ để giải toán không gian
Chuyên đề Hình học 11 : Bài 02. Sử dụng vectơ để giải toán không gian
Chuyên đề Hình học 11 :  Bài 01. Véctơ trong không gian, quan hệ vuông góc
Chuyên đề Hình học 11 : Bài 01. Véctơ trong không gian, quan hệ vuông góc
Chuyên đề Hình học 11 :  Bài 09. Hình chóp cụt và phép chiếu song song
Chuyên đề Hình học 11 : Bài 09. Hình chóp cụt và phép chiếu song song
Chuyên đề Hình học 11 :  Bài 08. Định lý Talet trong không gian. Tính chất hình hộp
Chuyên đề Hình học 11 : Bài 08. Định lý Talet trong không gian. Tính chất hình hộp

Đề thi mới
Toán 11 : Chương 2. Tổ hợp và xác suất
Toán 11 : Chương 2. Tổ hợp và xác suất
Toán 11 : Bài 1. Đại cương về đường thẳng
Toán 11 : Bài 1. Đại cương về đường thẳng
Toán 11 :  Bài 5. Đạo hàm cấp hai
Toán 11 : Bài 5. Đạo hàm cấp hai
Toán 11 :  Bài 4. Vi phân
Toán 11 : Bài 4. Vi phân
Toán 11 :  Bài 5. Khoảng cách
Toán 11 : Bài 5. Khoảng cách
Toán 11 :  Bài 4. Hai mặt phẳng vuông góc
Toán 11 : Bài 4. Hai mặt phẳng vuông góc
Toán 11 :  Bài 3. Đường thẳng vuông góc với mặt phẳng
Toán 11 : Bài 3. Đường thẳng vuông góc với mặt phẳng
Toán 11 :  Bài 2. Hai đường thẳng vuông góc
Toán 11 : Bài 2. Hai đường thẳng vuông góc
Toán 11 :  Bài 1. Vecto trong không gian
Toán 11 : Bài 1. Vecto trong không gian
Toán 11 :  Chương 3. Vecto trong không gian....
Toán 11 : Chương 3. Vecto trong không gian....




Múi giờ GMT +7. Hiện tại là 16:39.
Powered by: vBulletin v3.x.x Copyright ©2000-2014, Jelsoft Enterprises Ltd.

Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 196/GXN-TTĐT Cục Quản lý PTTH&TTĐT cấp ngày 11/11/2011.