Diễn đàn học tập của Hocmai.vn
Liên hệ quảng cáo: xem chi tiết tại đây

Diendan.hocmai.vn - Học thày chẳng tày học bạn! » Toán » Toán lớp 11 » [Toán11] 1 cái đề rất dễ




Trả lời
  #1  
Cũ 03-02-2010
botvit's Avatar
botvit botvit đang ngoại tuyến
MEM VIP
Lớp trưởng
 
Tham gia : 20-01-2009
Đến từ: Nông Cống-Thanh Hoá
Bài viết: 1,369
Đã cảm ơn: 148
Được cảm ơn 699 lần
[Toán11] 1 cái đề rất dễ

[B] thời gian 180phut
.................................................. ......................
Câu I

1.Giải BPt sau
\sqrt[]{\frac{x}{4}+\sqrt[]{x-4}}\geq 8-x
2. Giải hệt phương trình sau
x^2+1+y(y+x)=4y ; (x^2+1)(y+x-2)=y
CAu II
1.Giai PT sau: sin^2x+\frac{(1+cos2x)^2}{2sin2x}=2cos2x
2.Cho tập hợp A={0,1,2,3,4,5,6,7} Từ A có thể lập dược bao nhiêu số có 5 chữ số dôi một khác nhau và chai hết cho 2.
Câu III
tìm giá trị nhỏ nhất của biểu thức
P=\frac{a^2}{b^2+c^2+bc}+\frac{b^2}{c^2+a^2+ac}+ \frac{c^2}{a^2+b^2+ab}
a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
Câu IV
Cho hình chóp SABCD có dáy ABCD là hình bình hành với AB=a AD=2a Mặt bên SAB là một tam giác vuông cân tại A
TRên cạnh AD lấy 1 diểm M với AM=x Mặt phẳng anpha di qua M và song song với mặt phảng SAB cắt BC,SC,SD lần lượt tại N, P, Q (0<X<2a)
a, CM MNPQ là hình thang vuông
b,Tính diện tính thiết diện theo a,x
Câu V
1.Trong mặt phẳng với hệ tọa dộ 0xy cho hình vuông có dỉnh A(-4,5) và một dường chéo nằm trên dường thẳng có phuong trình 7x-y+8=0
Lập phương trình tổng quát của dường thẳng chứa cạnh AB của hình vuông
2.Trong mạt phẳng với hệ tọa dộ 0xy cho dường tròn (c)
x^2+y^2-2x+4y-4=0 .Lập phương trình tổng quát của dường thẳng di qua A(-1,2) và cắt dường tròn (c) theo dây cung MN có dộ dài=2\sqrt[]{5}
Câu VI
Cho khai triển (1+2x)^n=a_{o}+a_{1}x+....a_{n}x^n n la so nguyên
dương biết a_{o}+a_{1}+....a_{n}=729 Tìm n và số lớn nhất trong các số ao,a1...........................
__________________
................No' sẼ h0k khÓc.........

Thay đổi nội dung bởi: botvit, 03-02-2010 lúc 20:42.
Trả Lời Với Trích Dẫn
Có một thành viên đã cám ơn botvit vì bài viết này:
  #2  
Cũ 06-02-2010
rua_it's Avatar
rua_it rua_it đang ngoại tuyến
MEM VIP
Bí thư liên chi
 
Tham gia : 16-08-2009
Bài viết: 3,299
Điểm học tập:141
Đã cảm ơn: 1,981
Được cảm ơn 1,965 lần
Trích:
P=\frac{a^2}{b^2+c^2+bc}+\frac{b^2}{c^2+a^2+ac}+ \frac{c^2}{a^2+b^2+ab}
a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
\sum_{cyc} \frac{a^2}{b^2+bc+c^2} \geq \frac{(a^2+b^2+c^2)^2}{a^2.(b^2+bc+c^2)+b^2(a^2+ac  +c^2)+c^2(a^2+ab+b^2)}\\ \geq \frac{(a^2+b^2+c^2)^2}{acb^2+ca^2b+ac^2b+2.(a^2b^2  +b^2c^2+c^2a^2)} \\ \geq \frac{a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)}{3.(a^2  b^2+b^2c^2+c^2a^2} \\  \geq \frac{3.(a^2b^2+b^2c^2+c^2a^2}{3.(a^2b^2+b^2c^2+c^  2a^2)} \geq 1
Vậy P_{min}=1 Đăng thức xảy ra khi và chỉ khi a=b=c=1

Thay đổi nội dung bởi: rua_it, 06-02-2010 lúc 11:27.
Trả Lời Với Trích Dẫn
Có một thành viên đã cám ơn rua_it vì bài viết này:
  #3  
Cũ 06-02-2010
bigbang195's Avatar
bigbang195 bigbang195 đang ngoại tuyến
MEM VIP
Bí thư
 
Tham gia : 26-09-2009
Bài viết: 2,371
Điểm học tập:3
Đã cảm ơn: 1,757
Được cảm ơn 1,862 lần
[QUOTE=botvit;961776][B]
tìm giá trị nhỏ nhất của biểu thức
P=\frac{a^2}{b^2+c^2+bc}+\frac{b^2}{c^2+a^2+ac}+ \frac{c^2}{a^2+b^2+ab}
a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3



Thế hóa ra bài này thừa phải ko anh



chỉ cần cm

Nesbit
Trả Lời Với Trích Dẫn
  #4  
Cũ 06-02-2010
kido_b's Avatar
kido_b kido_b đang ngoại tuyến
Thành viên
Lớp trưởng
 
Tham gia : 13-09-2008
Đến từ: ngôi sao cassiopea
Bài viết: 1,015
Đã cảm ơn: 96
Được cảm ơn 258 lần
Trích:


Thế hóa ra bài này thừa phải ko anh



chỉ cần cm

Nesbit
[/quote]
Trích:
a,b,c là các số thực dương thỏa mãn
Đơn giản hoá .
Trả Lời Với Trích Dẫn
  #5  
Cũ 07-02-2010
tiger3323551's Avatar
tiger3323551 tiger3323551 đang ngoại tuyến
Thành viên
Thủ quỹ
 
Tham gia : 03-07-2009
Đến từ: TPHCM
Bài viết: 479
Đã cảm ơn: 175
Được cảm ơn 212 lần
đê này dễ quá câu 1 giải bất phương trình đặt t=căn(x-4)=>x=t^2+4 =>bpt <=>can(t^2+4+4t)/2>=4-t^2 hằng đẳng thức (căn(t+2)^2)/2>=4-t tới đây đưa giá trị tuyệt đối giải tiếp
Trả Lời Với Trích Dẫn
  #6  
Cũ 07-02-2010
tiger3323551's Avatar
tiger3323551 tiger3323551 đang ngoại tuyến
Thành viên
Thủ quỹ
 
Tham gia : 03-07-2009
Đến từ: TPHCM
Bài viết: 479
Đã cảm ơn: 175
Được cảm ơn 212 lần
câu 2 giải hệ phương trình nhân thấy pt(1) y=0 ko phải là nghiệm => chia 2 vế cho y pt(1) <=>(x^2+1)/y+x+y=4 và
pt(2)chia 2 vế cho y pt(2)<=> (x^2+1)/y*(y+x-2)=1 dùng phương pháp thế pt(2)<=>
(4-x-y)(x+y-2)=1<=> 6(x+y)-(x+y)^2=9 kết hợp với pt (1) đặt a=x+y, b=4y+xy giải hệ
6a-a^2=9 ,a^2-b=-1 =>a=3,b=10 giải hệ (3)=>y=5 x=-2 và y=2 x=1
Trả Lời Với Trích Dẫn
  #7  
Cũ 07-02-2010
botvit's Avatar
botvit botvit đang ngoại tuyến
MEM VIP
Lớp trưởng
 
Tham gia : 20-01-2009
Đến từ: Nông Cống-Thanh Hoá
Bài viết: 1,369
Đã cảm ơn: 148
Được cảm ơn 699 lần
Bạn ah trong thời gian 180p bạn làm hết cái dề này thì nó mới gọi là dễ
Còn nói cáh làm mà ko làm tới nơi thì nói thật nó ko là cái gì cả
__________________
................No' sẼ h0k khÓc.........
Trả Lời Với Trích Dẫn
  #8  
Cũ 07-02-2010
tiger3323551's Avatar
tiger3323551 tiger3323551 đang ngoại tuyến
Thành viên
Thủ quỹ
 
Tham gia : 03-07-2009
Đến từ: TPHCM
Bài viết: 479
Đã cảm ơn: 175
Được cảm ơn 212 lần
tiếp câu 3 giải phương trình lượng giác pt(1)<=>2sin^2(x)sin(2x)+(1+cos2x)^2=4sin(2x)cos(2 x)
<=>sin^3(x)cosx+cos^4(x)-2sin(x)cos(x)cos(2x)=0
<=>cosx=0và 1-3sin^2(x)cos^2(x)-2sinx+4sin^3(x)=0 giải pt bậc 4 theo sinx
Trả Lời Với Trích Dẫn
  #9  
Cũ 07-02-2010
tiger3323551's Avatar
tiger3323551 tiger3323551 đang ngoại tuyến
Thành viên
Thủ quỹ
 
Tham gia : 03-07-2009
Đến từ: TPHCM
Bài viết: 479
Đã cảm ơn: 175
Được cảm ơn 212 lần
câu tổ hợp quá dễ khỏi làm đề này nếu ko tính câu bdt chỉ cần 90 -120 phút là xong
Trả Lời Với Trích Dẫn
  #10  
Cũ 07-02-2010
tiger3323551's Avatar
tiger3323551 tiger3323551 đang ngoại tuyến
Thành viên
Thủ quỹ
 
Tham gia : 03-07-2009
Đến từ: TPHCM
Bài viết: 479
Đã cảm ơn: 175
Được cảm ơn 212 lần
tiếp câu hình học không gian câu này có trong sách bài tập hình hoc phần quan hệ song song các bạn có thể tham khảo
Trả Lời Với Trích Dẫn
Trả lời

Chia sẻ/đánh dấu bài viết


Ðiều chỉnh Tìm trong bài viết
Tìm trong bài viết:

Tìm chi tiết
Xếp bài

Quyền hạn của bạn
Bạn không thể tạo chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể đăng tập đính kèm
Bạn không thể sửa bài của mình

BB codeMở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

 
Bài giảng mới
Chuyên đề Hình học 11 :  Bài 08. Khoảng cách từ 1 điểm đến 1 mặt phẳng
Chuyên đề Hình học 11 : Bài 08. Khoảng cách từ 1 điểm đến 1 mặt phẳng
Chuyên đề Hình học 11 :  Bài 06. Dựng thiết diện tạo bởi mặt phẳng vuông góc với đường thẳng cho trước
Chuyên đề Hình học 11 : Bài 06. Dựng thiết diện tạo bởi mặt phẳng vuông góc với đường thẳng cho trước
Chuyên đề Hình học 11 :  Bài 07. Hai mặt phẳng vuông góc
Chuyên đề Hình học 11 : Bài 07. Hai mặt phẳng vuông góc
Chuyên đề Hình học 11 :  Bài 05. Định lý 3 đường vuông góc, các khối hình KG đặc biệt
Chuyên đề Hình học 11 : Bài 05. Định lý 3 đường vuông góc, các khối hình KG đặc biệt
Chuyên đề Hình học 11 :  Bài 04. Đường thẳng vuông góc với mặt phẳng
Chuyên đề Hình học 11 : Bài 04. Đường thẳng vuông góc với mặt phẳng
Chuyên đề Hình học 11 :  Bài 03. Hai đường thẳng vuông góc trong không gian
Chuyên đề Hình học 11 : Bài 03. Hai đường thẳng vuông góc trong không gian
Chuyên đề Hình học 11 :  Bài 02. Sử dụng vectơ để giải toán không gian
Chuyên đề Hình học 11 : Bài 02. Sử dụng vectơ để giải toán không gian
Chuyên đề Hình học 11 :  Bài 01. Véctơ trong không gian, quan hệ vuông góc
Chuyên đề Hình học 11 : Bài 01. Véctơ trong không gian, quan hệ vuông góc
Chuyên đề Hình học 11 :  Bài 09. Hình chóp cụt và phép chiếu song song
Chuyên đề Hình học 11 : Bài 09. Hình chóp cụt và phép chiếu song song
Chuyên đề Hình học 11 :  Bài 08. Định lý Talet trong không gian. Tính chất hình hộp
Chuyên đề Hình học 11 : Bài 08. Định lý Talet trong không gian. Tính chất hình hộp

Đề thi mới
Toán 11 : Chương 2. Tổ hợp và xác suất
Toán 11 : Chương 2. Tổ hợp và xác suất
Toán 11 : Bài 1. Đại cương về đường thẳng
Toán 11 : Bài 1. Đại cương về đường thẳng
Toán 11 :  Bài 5. Đạo hàm cấp hai
Toán 11 : Bài 5. Đạo hàm cấp hai
Toán 11 :  Bài 4. Vi phân
Toán 11 : Bài 4. Vi phân
Toán 11 :  Bài 5. Khoảng cách
Toán 11 : Bài 5. Khoảng cách
Toán 11 :  Bài 4. Hai mặt phẳng vuông góc
Toán 11 : Bài 4. Hai mặt phẳng vuông góc
Toán 11 :  Bài 3. Đường thẳng vuông góc với mặt phẳng
Toán 11 : Bài 3. Đường thẳng vuông góc với mặt phẳng
Toán 11 :  Bài 2. Hai đường thẳng vuông góc
Toán 11 : Bài 2. Hai đường thẳng vuông góc
Toán 11 :  Bài 1. Vecto trong không gian
Toán 11 : Bài 1. Vecto trong không gian
Toán 11 :  Chương 3. Vecto trong không gian....
Toán 11 : Chương 3. Vecto trong không gian....




Múi giờ GMT +7. Hiện tại là 11:15.
Powered by: vBulletin v3.x.x Copyright ©2000-2014, Jelsoft Enterprises Ltd.

Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 196/GXN-TTĐT Cục Quản lý PTTH&TTĐT cấp ngày 11/11/2011.