Diễn đàn học tập của Hocmai.vn
Liên hệ quảng cáo: xem chi tiết tại đây

Diendan.hocmai.vn - Học thày chẳng tày học bạn! » Toán » Lớp 12 » Ai biết cách xác định thiết diện trong hình không gian vào help




Trả lời
  #1  
Cũ 27-09-2009
vhdaihoc vhdaihoc đang ngoại tuyến
Thành viên
Bàn trưởng
 
Tham gia : 31-05-2009
Đến từ: cháo trứng
Bài viết: 110
Đã cảm ơn: 11
Được cảm ơn 11 lần
Wink Ai biết cách xác định thiết diện trong hình không gian vào help

Ai biết cách xác định thiết diện trong mặt phẳng chỉ bảo hộ mình với! Chỉ bảo chi tiết càng tốt, mình sẽ thanks more naz!
__________________
Nhìn kute như marson ấy! cháu ta đấy
Trả Lời Với Trích Dẫn
  #2  
Cũ 27-09-2009
truongtrang12's Avatar
truongtrang12 truongtrang12 đang ngoại tuyến
MEM VIP
Bí thư liên chi
 
Tham gia : 15-08-2009
Đến từ: (¯`v´¯)†rµon(¬†ran(¬½(¯`v´¯)……Ďàиђ ¹ þђúŧ ðể ÿêц™……………
Bài viết: 3,127
Đã cảm ơn: 951
Được cảm ơn 1,961 lần
Cách xác định thiết diện :
Khi ta cắt hình chóp bằng 1 mặt phẳng , mặt phẳng này lần lượt cắt các mặt của hình chóp theo những giao tuyến. Chúng tạo thành 1 đa giác phẳng gọi là mặt cắt hay thiết diện của mặt phẳng với hình chóp.

Để xác định thiết diện của 1 mặt phẳng với hình chóp ta tiến hành xác định tất cả các giao tuyến tạo bởi mặt phẳng và các mặt hình chóp. Các bước cụ thể như sau:
1. Xác định giao điểm gốc: là điểm mà mặt phẳng giao hình chiếu (ngay từ đầu ta đã xác định được)
(Ít bài nào cần sử dụng bước này - có thể bỏ qua)
2. Xác định giao tuyến gốc: là giao tuyến của mặt phẳng với 1 mặt của hình chóp.
3. Tìm giao điểm của giao tuyến gốc với những đường cùng nằm trong 1 mặt phẳng với nó, từ đó ta xác định tiếp những giao tuyến kế tiếp của mặt phẳng với các mặt còn lại của hình chóp
__________________
I promise I'll be never fall in love

I will not love ... like forever.

Ctrl + A



...Chỉ từ 1 giọt nước, người giỏi suy luận có thể suy ra khả năng của 1 đại dương, tuy chưa bao giờ tận mắt nhìn thấy chúng.=>Cuộc sống là 1 chuỗi mắt xích rộng lớn mà ta có thể biết bản chất của nó, nếu ta có thể biết được 1 mắt xích...
Trả Lời Với Trích Dẫn
Có 4 thành viên đã gửi lời cảm ơn đến truongtrang12 với bài viết này:
  #3  
Cũ 27-09-2009
vhdaihoc vhdaihoc đang ngoại tuyến
Thành viên
Bàn trưởng
 
Tham gia : 31-05-2009
Đến từ: cháo trứng
Bài viết: 110
Đã cảm ơn: 11
Được cảm ơn 11 lần
Thanks bạn nhá nhưng nếu bạn giúp mình thử xác định 1 bài cụ thể nào đó thỳ tốt quá, đa tạ và hậu tạ rất nhiều
bạn tự lấy ví dụ nếu không thỳ để mình ghi đề
__________________
Nhìn kute như marson ấy! cháu ta đấy
Trả Lời Với Trích Dẫn
Trả lời

Chia sẻ/đánh dấu bài viết


Ðiều chỉnh Tìm trong bài viết
Tìm trong bài viết:

Tìm chi tiết
Xếp bài

Quyền hạn của bạn
Bạn không thể tạo chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể đăng tập đính kèm
Bạn không thể sửa bài của mình

BB codeMở
Smilies đang Mở
[IMG] đang Mở
HTML đang Tắt

 
Bài giảng mới

Đề thi mới
Toán 12 : Bài 10. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương
Toán 12 : Bài 10. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trùng phương
Toán 12 : Bài 9. Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc ba
Toán 12 : Bài 9. Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc ba
Toán 12 :   Bài 1. Khái niệm về khối đa diện
Toán 12 : Bài 1. Khái niệm về khối đa diện
Toán 12 : Chương 3. Phương pháp tọa độ trong không gian
Toán 12 : Chương 3. Phương pháp tọa độ trong không gian
Toán 12 :    Bài 3. Phương trình đường thẳng trong không gian
Toán 12 : Bài 3. Phương trình đường thẳng trong không gian
Toán 12 : Phương trình mặt phẳng
Toán 12 : Phương trình mặt phẳng
Toán 12 :   Bài 1. Hệ tọa độ trong không gian
Toán 12 : Bài 1. Hệ tọa độ trong không gian
Toán 12 :   Bài 2. Mặt cầu
Toán 12 : Bài 2. Mặt cầu
Toán 12 :    Bài 1. Khái niệm về mặt tròn xoay
Toán 12 : Bài 1. Khái niệm về mặt tròn xoay
Toán 12 :  Chương I. Khối đa diện
Toán 12 : Chương I. Khối đa diện




Múi giờ GMT +7. Hiện tại là 04:43.
Powered by: vBulletin v3.x.x Copyright ©2000-2014, Jelsoft Enterprises Ltd.
Advertisement System V2.4 By   Branden

Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 196/GXN-TTĐT Cục Quản lý PTTH&TTĐT cấp ngày 11/11/2011.